Зеркальная симметрия. Симметрия - это гармония в расположении одинаковых предметов какой-либо группы или частей в одном предмете, причем расположение.

Презентация:



Advertisements
Похожие презентации
ВИДЫ ДВИЖЕНИЯ. Понятиедвижения Понятие движения Д вижение пространства – это отображение пространства на себя, сохраняющее расстояния между точками. Примером.
Advertisements

Подготовила : Ученица 11 «А» класса Пустовалова Василиса.
Презентация Учениц 11 А класса Печеньковой Екатерины Шмидт Маргариты.
Содержание 2. Движения относительно точки 3. Движения относительно прямой 5. Зеркальная симметрия 6. Заключение 1. Введение 4. Параллельный перенос Закончить.
Симметрия в пространстве Симметрия относительно точки, прямой, плоскости; Симметрия в природе и на практике.
Движение - Движение - Это отображение пространства на себя, сохраняющее расстояния между точками.
Движения. Отображения пространства на себя, сохраняющие расстояние между точками, называются движениями пространства. Отображения пространства на себя,
Зеркальная симметрия Выполнил работу ученик 9Б класса Средней школы 9 Батурин Евгений.
Симметрия предметов на плоскости. Изображения предметов на плоскости из окружающего мира имеет ось или центр симметрии. С симметрией мы встречаемся в природе,
Лозовой Андрей «Симметрия…есть идея, с помощью которой человек веками пытался объяснять и создавать порядок, красоту и совершенство» ( Герман Вейль)
Осевая симметрия многогранников
Симметрия (номинация учебные предметы). Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической.
Осевая и центральная симетрия Осевая и центральная симетрия г.
Урок геометрии в 11 классе учителя Текутовой И.Н. Движения в пространстве Центральная симметрия Центральная симметрия Осевая симметрия Осевая симметрия.
Самотаева Ирина 9 Б Симметрия и ее виды ЮВАО ГОУ СОШ 1968 Руководитель проекта: Никифорова Марина Николаевна
Понятие движения Составитель ученик 9 класса школы при Посольстве РФ в Великобритании Силицкий Артём Учитель математики Щербакова В.Б.
Выполнил ученик 11 Б класса Михайлов Антон. М M О Пусть О - точка в пространстве. Рассмотрим отображение пространства на себя, при котором точка О остается.
Движение Движением (или перемещением) фигуры называется такое ее отображение, при котором каждым двум ее точкам A и B соответствуют такие точки A' и B',
Выполнила: Давыдова Кристина.. Симметрия бывает. 1. Центральная 2. Осевая 3. Симметрия в пространстве(зеркальная)
Движение Работу выполнила ученица 9 класса «В» Сердитова Ксения Работу выполнила ученица 9 класса «В» Сердитова Ксения.
Транксрипт:

Зеркальная симметрия

Симметрия - это гармония в расположении одинаковых предметов какой-либо группы или частей в одном предмете, причем расположение определяется одной или несколькими воображаемыми зеркальными плоскостями.

Виды симметрии а) Лучевая симметрия б) Осевая симметрия в) Центральная симметрия г) Зеркальная симметрия

Зеркальной симметрией называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно этой плоскости точку М 1. М м М М М1М1 О О М М К К ОМ=ОМ 1 ; ММ 1 МК=М 1 К 1 М1М1 К1К1

Это математическое понятие описывает соотношение в оптике объектов и их (мнимых) изображений при отражении в плоском зеркале, а также многие законы симметрии.

Геометрическая фигура называется симметричной относительно плоскости S ( рис.104 ), если для каждой точки E этой фигуры может быть найдена точка E1 этой же фигуры, так что отрезок EE1 перпендикулярен плоскости S и делится этой плоскостью пополам ( EA = AE1 ). Плоскость S называется плоскостью симметрии. Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова. Они называются зеркально равными.

Зеркало не просто копирует объект, а меняет местами (переставляет) передние и задние по отношению к зеркалу части объекта. Зеркальный двойник оказывается "вывернутым" вдоль направления перпендикулярного к плоскости зеркала.

Докажем,что зеркальная симметрия есть движение. Введем прямоугольную систему координат Оxyz, совместим плоскость Оxy с плоскостью симметрии и установим связь между координатами точек M(x; y; z) и M1(x1; y1; z1)

Если М не лежит в плоскости Оху, то х =х 1, у =у 1, z = -z1. Если М I Оху, то x=x1, y=y1, z=z1=0 Рассмотрим А(x1; y1; z1), В(x2; y2; z2), А> А1, В> В1, тогда А1(x1; y1; -z1), В1(x2; y2; - z2), тогда АВ=А1В1, т.е.Оху – движение.

Зеркально осевая симметрия. Если плоская фигура ABCDE ( рис.107 ) симметрична относительно плоскости S ( что возможно, если только плоская фигура перпендикулярна плоскости S ), то прямая KL, по которой эти плоскости пересекаются, является осью симметрии фигуры ABCDE. В этом случае фигура ABCDE называется зеркально-симметричной.

Многогранник, обладающий зеркально-осевой симметрией; прямая AB зеркально-поворотная ось.

Прямая призма обладает зеркальной симметрией. Плоскость симметрии параллельна её основаниям и расположена на одинаковом расстоянии между ними.

Каждая деталь в симметричной системе существует как двойник своей обязательной паре, расположенной по другую сторону оси, и благодаря двойственности отдельных элементов сооружение читается целиком даже при восприятии с одной стороны.

Зеркальная симметрия-это симметрия окружающего нас мира. Построение изображения с помощью зеркальной симметрии сходно с изображением в зеркале.

Зеркальная симметрия в природе