Вдохновение есть расположение души к живейшему принятию впечатлений и соображению понятий, следственно, и объяснению оных. Вдохновение нужно в геометрии,

Презентация:



Advertisements
Похожие презентации
ПланиметрияСтереометрия Углом на плоскости мы называем фигуру, образованную двумя лучами, исходящими из одной точки. Двугранный угол АВ С АВ С.
Advertisements

Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Д в у г р а н н ы й у г о л. Двугранным углом называется фигура, образованная прямой a и двумя полуплоскостями с общей границей a, не принадлежащими одной.
Верно ли, что две прямые, параллельные одной плоскости, перпендикулярны (две прямые, перпендикулярные к одной плоскости, параллельны). 2.Может.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. Н А Расстояние от точки до плоскости – длина перпендикуляра Повторение.
Неперпендикулярные плоскости и пересекаются по прямой МN. В плоскости из точки А проведен перпендикуляр АВ к прямой МN и из той же точки А проведен перпендикуляр.
Задачи на нахождение углов между плоскостями. (Вычислительные методы)
Презентация по материалам рабочей тетради « Задача С2 » авторов В.А. Смирнова под редакцией И.В. Ященко, А.Л. Семенова Геометрическ ие задачи « С2 »
Презентация к уроку геометрии (10 класс) по теме: Двугранный угол
Построить линейный угол двугранного угла ВАСК. Четырехугольник АВСD – ромб, АС - диагональ. А С В N П-р Н-я П-я TTП АС ВМ H-я H-я АС NМ П-я П-я Угол ВMN.
Презентация к уроку по геометрии (10 класс) по теме: презентация: Двугранный угол. Угол между плоскостями
Тема урока: Двугранный угол. Угол между плоскостями.
Перпендикулярность плоскостей Перпендикулярность плоскостей.
Построить линейный угол двугранного угла ВАСК. Четырехугольник АВСD – ромб, АС - диагональ. А С В N П-р Н-я П-я ОTTП АС ВМ H-я H-я АС NМ П-я П-я Угол.
Транксрипт:

Вдохновение есть расположение души к живейшему принятию впечатлений и соображению понятий, следственно, и объяснению оных. Вдохновение нужно в геометрии, как и в поэзии. А.С. Пушкин

геометрия

угол

двугранный

знакомство с понятиями двугранный угол и его линейный угол, обучение построению линейного угла данного двугранного угла, развитие навыков построения перпендикуляра к плоскости, применения ТТП, внимания, воспитание усидчивости, взаимоуважения. получить необходимую информацию; проанализировать полученную информацию; применить теорию на практике; заполнить кластер; оценить свою деятельность.

Планиметрия Стереометрия Углом на плоскости называется фигура, образованная двумя лучами, исходящими из одной точки. Двугранный угол АВ С Двугранным углом называется фигура, образованная прямой a и двумя полуплоскостями с общей границей a, не принадлежащими одной плоскости. а a – Прямая a – ребро двугранного угла Две полуплоскости – грани двугранного угла

O Угол РDEK Двугранный угол АВNМ, ВN – ребро, точки А и М лежат в гранях двугранного угла А В N Р M К D E Угол SFX – линейный угол двугранного углаSX F

Угол РОК – линейный угол двугранного угла РDEК. D EРК O Градусной мерой двугранного угла называется градусная мера его линейного угла. Алгоритм построения линейного угла.

Все линейные углы двугранного угла равны друг другу. А ВO А1А1А1А1 В1В1В1В1O 1 Лучи ОА и О 1 А 1 – сонаправлены Лучи ОВ и О 1 В 1 – сонаправлены Углы АОВ и А 1 О 1 В 1 равны как углы с сонаправленными сторонами

Двугранный угол может быть острым, прямым, тупым

Построить линейный угол двугранного угла ВАСК. Треугольник АВС – тупоугольный. А В N П-р Н-я П-я TTП АС ВS H-я H-я АС NS П-я П-я Угол ВSN – линейный угол двугранного угла ВАСК К С S

Построить линейный угол двугранного угла ВАСК. Треугольник АВС – равнобедренный. А С В N П-р Н-я П-я TTП АС ВМ H-я H-я АС NМ П-я П-я Угол ВMN – линейный угол двугранного угла ВАСК К M

Построить линейный угол двугранного угла ВАСК. Треугольник АВС – прямоугольный. А В N П-р Н-я П-я TTП АС ВС H-я H-я АС NС П-я П-я Угол ВСN – линейный угол двугранного угла ВАСК К С

Построить линейный угол двугранного угла ВDСК. АВСD – параллелограмм, угол С тупой.А В П-р П-я TTП DС ВM H-я H-я DС NM П-я П-я Угол ВMN – линейный угол двугранного угла ВDСК К С D Н-я M N

Построить линейный угол двугранного угла ВDСК. АВСD – прямоугольник. А В N П-р Н-я П-я TTП DС BС H-я H-я DС NС П-я П-я Угол ВСN – линейный угол двугранного угла ВАСК К С D

Построить линейный угол двугранного угла ВDСК. АВСD – параллелограмм, угол С острый. А В П-р П-я TTП DС ВM H-я H-я DС NM П-я П-я Угол ВMN – линейный угол двугранного угла ВDСК К С D N Н-я M

Построить линейный угол двугранного угла ВDСК. АВСD – трапеция, угол С острый. А В П-р П-я TTП DС ВM H-я H-я DС NM П-я П-я Угол ВMN – линейный угол двугранного угла ВDСК К С D Н-я M N

А В С К Построить угол между плоскостями АВС и ВКС

А1А1 В1В1 С1С1 Д1Д1 АВ С Д Построить угол между плоскостями АВСД и АСД 1

Построить угол между плоскостями АВ 1 С и АВС А А1А1 В В1В1 С С1С1 О

А А1А1 В В1В1 С С1С1 О Д Д1Д1 Е Е1Е1 F F1F1 Постройте угол между плоскостями ВF 1 Д и АВСДЕF

Задача 1: В кубе A…D 1 найдите угол между плоскостями ABC и CDD 1. В кубе A…D 1 найдите угол между плоскостями ABC и CDA 1. Задача 2: Задача 3: В кубе A…D 1 найдите угол между плоскостями ABC и BDD 1. Задача 4: В кубе A…D 1 найдите угол между плоскостями ACC 1 и BDD 1. В кубе A…D 1 найдите угол между плоскостями BC 1 D и BA 1 D. Задача 5: Неперпендикулярные плоскости и пересекаются по прямой МN. В плоскости из точки А проведен перпендикуляр АВ к прямой МN и из точки А проведен перпендикуляр АС к плоскости. Докажите, что угол АВС – линейный угол двугранного угла АМNC. Задача 6:

Задача 1: А В С Д А1А1 В1В1 С1С1 Д1Д1 Ответ: 90 o. Задача 2: А В С Д А1А1 В1В1 С1С1 Д1Д1 Ответ: 45 o.

Задача 3: А В С Д А1А1 В1В1 С1С1 Д1Д1 Ответ: 90 o. Задача 4: А В С Д А1А1 В1В1 С1С1 Д1Д1 Ответ: 90 o.

Задача 5: А В С Д А1А1 В1В1 С1С1 Д1Д1 Решение: О - диагональ квадрата со стороной равной 1.

M N А С В П-р Н-я П-я TTП МN АB H-я MN ВС П-я Угол АВС – линейный угол двугранного угла АМNC Доказательство:

Какие знания и умения необходимы при построении двугранного угла? Определение двугранного угла Теорема о трех перпендикулярах Построение перпендикуляра Определение пересекающихся плоскостей Построение пересекающихся плоскостей Определение перпендикуляра Определение перпендикуляра Определение наклонной Определение проекции

Интернет – ресурсы