Экзаменационная работа по алгебре, 9 класс Экзаменационная работа по алгебре, 9 класс (Демонстрационный вариант) ГИА год
Часть 1
Часть 2
Решение задания 1 Разложим числитель и знаменатель дроби на множители: После изменения знаков в одном из множителей числителя и сокращения полученной дроби получаем: 1 1 Ответ:
Решение задания 2 Умножим обе части уравнения на общий знаменатель дробей Получаем уравнение которое после преобразований становится квадратным: Корни х 1 =1 и х 2 =4 этого уравнения удовлетворяют условию Ответ: 1; 4.
Решение задания 3 Всего изготовлено деталей (шт.) Делал за 1 день (шт.) Время работы (дни) фактически по плану Составим уравнение
Решение задания 3 (продолжение) Решая это уравнение, находим единственный корень х = 429 Ответ: 429 деталей.
Решение задания 4 Воспользуемся равносильным переходом Получаем систему неравенств: Решаем первое неравенство системы:
Решение задания 4 (продолжение) Для решения второго неравенства системы воспользуемся равносильным переходом: Получаем: Находим решение системы неравенств: Ответ:
Решение задания 5 Рассмотрим два случая : а = 0 и а = При а = 0 уравнение становится линейным уравнением с единственным корнем При а = 0 уравнение будет квадратным уравнением. Это уравнение имеет единственный корень, когда его дискриминант В результате расчетов получаем, что дискриминант равен нулю при а =3 и а = –1,5. Ответ: -1,5; 0; 3.
ГИА