Разложение многочлена на множители работа учителя математики МОУ-СОШ 41 Привокзального района г.Тулы Полянцевой Галины Александровны.

Презентация:



Advertisements
Похожие презентации
Разложение многочлена на множители. Немного теории Разложить многочлен на множители – это значит представить его в виде произведения. Существует несколько.
Advertisements

Разложение многочленов на множители.. Обобщающий урок по теме «Разложение на множители»
Разложение многочленов на множители. Учебная презентация. Обобщающий урок по теме «Разложение на множители» 7класс.
Разложение на множители. Что называют разложением многочлена на множители? a 2 – 5ab = a 2 – 25 = a 2 – 36 = Разложите на множители а(а – 5b) (a – 5)
Разложение многочлена на множители с помощью комбинации различных приемов 7 класс.
Разложение многочлена на множители способом группировки 7 класс.
Разложение многочлена на множители с помощью комбинации различных приемов. Уважение к минувшему – вот черта, отличающая образованность от дикости. А.С.
ВЫНЕСЕНИЕ ОБЩЕГО МНОЖИТЕЛЯ ЗА СКОБКИ 7 класс. распределительный закон умножения: ac + bc = c(a + b). выделить в двух рассматриваемых компонентах общий.
Учебная презентация 7класс, алгебра При решении уравнений, в вычислениях бывает удобно заменить многочлен произведением нескольких многочленов. Такое.
МБОУ «Основная общеобразовательная школа 7» Разложение многочлена на множители Выполнили: ученики 7 класса Албутова Ксения, Фомин Кирилл, Ермолин Алексей.
Для добавления текста щёлкните мышью Разложение многочлена на множители с помощью комбинации различных приемов. Уважение к минувшему – вот черта, отличающая.
Разложить многочлен на множители это значит представить его в виде произведения двух или нескольких многочленов.
Урок математики в 7 классе (с использованием интерактивного комплекса).
Урок алгебры в 7 А классе РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ НА МНОЖИТЕЛИ Учитель математики МКОУ «СОШ 7» г. Изобильного Федорова О.Ю.
«Мало иметь хороший ум, главное – хорошо его применять». Р. Декарт. Разработал Дудкин Владислав, ученик 11 класса.
Что такое разложение многочленов на множители и зачем это нужно? Алгебра 7 класс.
1. Найти общий множитель среди чисел; 2. Найти общий множитель среди букв; 3. Записать общий множитель и открыть скобку; 4. В скобке записать результат.
Разложение многочлена на множители способом группировки !!! Подготовила : Сидорова Диана Три пути ведут к знанию : путь размышления – это путь самый благородный,
Учитель математики Наталья Игоревна Касьянова МОУ гимназия 5 г. Морозовск Ростовской обл.
Транксрипт:

Разложение многочлена на множители работа учителя математики МОУ-СОШ 41 Привокзального района г.Тулы Полянцевой Галины Александровны

Немного теории Разложить многочлен на множители – это значит представить его в виде произведения. Существует несколько способов разложения: Вынесение общего множителя за скобку Способ группировки С помощью формул сокращенного умножения

Вынесение общего множителя за скобку Если все члены многочлена содержат общий множитель, то этот множитель можно вынести за скобки. 19 а-38b= 19·а - 19·2b = 19(а – 2b) 3 аb 2 + 4bc 3 = b·3a 2 +b·4c 3 =b(3a 2 +4c 3 )

Алгоритм нахождения общего множителя нескольких одночленов Найти наибольший общий делитель коэффициентов всех одночленов, входящих в многочлен, - он и будет общим числовым множителем (это относится к случаю с целочисленными коэффициентами). Найти переменные, которые входят в каждый член многочлена, выбрать для каждого из них наименьший показатель степени. Произведение коэффициента и переменной, найденных на первом и втором шагах, является общим множителем, который следует вынести за скобки.

Пример 1 Разложить на множители: х 4 у 3 – 2 х 3 у х 2. Воспользуемся сформулированным алгоритмом. Наибольший общий делитель коэффициентов 1, -2 и 5 равен 1. Переменная x входит во все члены многочлена с показателями соответственно 4, 3, 2; следовательно, можно вынести за скобки x 2. Переменная y входит не во все члены многочлена; значит, ее нельзя вынести за скобки. Вывод: за скобки можно вынести x 2. Получим: х 4 y 3 - 2x 3 y 2 + 5x 2 =x 2 (x 2 y 3 - 2xy 2 + 5).

Способ группировки Данный способ применяют к многочленам, которые не имеют общего множителя для всех членов многочлена. Чтобы разложить многочлен на множители способом группировки, нужно: Объединить члены многочлена в такие группы, которые имеют общий множитель в виде многочлена Вынести этот общий множитель за скобки

Пример 2 Для уяснения сути способа группировки рассмотрим следующий пример: разложить на множители многочлен xy-6+3y-2y Первый способ группировки: xy-6+3y-2y=(xy-6)+(3x-2y). Группировка неудачна. Второй способ группировки: xy-6+3y-2y=(xy+3x)+(-6-2y)=x(y+3)-2(y+3)=(y+3)(x-2). Третий способ группировки: xy-6+3y-2y=(xy-2y)+(-6+3x)=y(x-2)+3(x-2)=(x-2)(y+3). Ответ: xy-6+3y-2y=(x-2)(y+3). Как видите, не всегда с первого раза группировка оказывается удачной. Если группировка оказалась неудачной, откажитесь от нее, ищите иной способ. По мере приобретения опыта, вы будете быстро находить удачную группировку.

Разложение на множители с помощью формул сокращенного умножения Вспомним эти формулы: a 2 -b 2 =(a-b)(a+b); a 3 -b 3 =(a-b)(a 2 +ab+b 2 ); a 3 +b 3 =(a+b)(a 2 -ab+b 2 ); a 2 +2ab+b 2 =(a+b) 2 ; a 2 -2ab+b 2 =(a-b) 2.

Пример 3 Разложить на множители 1) x 6 -4a 4. Воспользуемся первой формулой (разность квадратов): x 6 -4a 4 =(x 3 ) 2 -(2a 2 ) 2 =(x 2 -2a 2 )(x 3 +2a 2 ). 2) a 6 +27b 3. Воспользуемся третьей формулой (сумма кубов): a 6 +27b 3 =(a 2 ) 3 +(3b) 3 =(a 2 +3b)((a 2 ) 2 -a 2 ·3b+(3b) 2 )= =(a 2 +3b)(a 4 -3a 2 b+9b 4 ). 3) a 2 -4ab+4b 2. В этом примере дан трехчлен, для его разложения на множители будем пользоваться пятой формулой, если, конечно, убедимся в том, что трехчлен является полным квадратом: a 2 -4ab+4b 2 =a 2 +(2b) 2 -2·a·2b=(a-2b) 2. Мы убедились, что трехчлен содержит сумму квадратов одночленов a и 2b, а также удвоенное произведение этих одночленов. Значит, это полный квадрат, причем квадрат разности.

Пример 4 Найти значение числового выражения Дважды воспользуемся формулой разности квадратов: = (53-47)(53+47) = 6·100 = 6 = (61-39)(61+39) 22· Разложение на множители позволило нам сократить дробь. Позднее мы оценим это и при выполнении действий с алгебраическими дробями

Комбинации различных приемов разложения на множители В математике не так часто бывает, чтобы при решении примера применялся только один прием. Чаще встречаются комбинированные примеры, где сначала используется один прием, затем другой и т.д. Рассмотрим такой пример.

Пример 4 Разложить на множители многочлен 36a 6 b 3 -96a 4 b 4 +64a 2 b 5 1) Вынесем за скобки 4a 2 b 3. Получим: 36a 6 b 3 -96a 4 b 4 +64a 2 b 5 =4a 2 b 3 (9a 4 -24a 2 b+16b 2 ). 2) Рассмотрим трехчлен в скобках: 9a 4 -24a 2 b+16b 2. Он является полным квадратом, т.е. 9a 4 -24a 2 b+16b 2 =(3a 2 -4b) 2. 3) Комбинируя два приема (вынесение общего множителя за скобки и использование формул сокращенного умножения), получаем окончательный результат: 36a 6 b 3 -96a 4 b 4 +64a 2 b 5 =4a 2 b 3 (3a 2 -4b) 2.

Основные результаты Вы познакомились со следующими приемами разложения многочлена на множители: вынесение общего множителя за скобки способ группировки использование формул сокращенного умножения