Сфера, описанная вокруг многогранника Курышова Н.Е. СПб лицей 488.

Презентация:



Advertisements
Похожие презентации
Комбинации многогранников и тел вращения Таск Ксения, 11 «Б»
Advertisements

Шары и многогранники презентация к лекции В.П. Чуваков.
Шар, вписанный в многогранник Шар называется вписанным в многогранник, если он касается всех граней данного многогранника.
Необходимые формулы и теоремы Площадь треугольника можно вычислить по формулам Площадь прямоугольного треугольника можно вычислить по формуле Объем пирамиды.
Окружность – множество точек плоскости, равноудаленных от данной точки.
B A C E K M A B C K L M
Призма, вписанная в шар Тема урока в 11-м классе Учитель школы 304 Центрального района Лохман Ю.Ю.
Гнусова Марина Александровна.. РАЗНЫЕ ЗАДАЧИ НА МНОГОГРАННИКИ, ЦИЛИНДР, КОНУС И ШАР. 11 класс Гнусова Марина Александровна учитель математики МКОУ СОШ.
А1А1 А2А2 АnАn Р А3А3 Многогранник, составленный из n-угольника А 1 А 2 …А n n треугольников, называется пирамидой. Вершина Н высотой пирамиды Перпендикуляр,
11 класс геометрия. Конус можно описать около пирамиды, если ее основание – многоугольник, вписанный в окружность, а вершина пирамиды проецируется в центр.
Геометрия Пирамида. Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания.
Описанная сфера. Определение Вписанная в сферу пирамида Вписанная в сферу усеченная пирамида Вписанная в сферу призма © 2011 Nikolas science.
Сфера и шар. Презентация урока учителя Красовской Т.А.,МОУ СОШ с. Кучки Пензенского района Презентация урока учителя Красовской Т.А.,МОУ СОШ с. Кучки Пензенского.
Сфера и шар.. Сферой называется поверхность, которая состоит из всех точек пространства, находящихся на заданном расстоянии от данной точки. Эта точка.
Тема урока: «Разные задачи на многогранники, цилиндр, конус и шар»
Изображение сферы с многогранниками Занятие 1. N S Изображение сферы Экватор – окружность большого круга Полюсы – точки пересечения сферы с диаметром,
Р е к о м е н д а ц и и к р е ш е н и ю з а д а ч 2 0 2,
Методическая разработка по геометрии (7 класс) по теме: Презентация "Окружность"
Вписанные и описанные тела. Цилиндр, описанный около призмы Цилиндр можно описать около прямой призмы если ее основание – многоугольник, вписанный в окружность.
Урок 2 Призма. Сколько ребер может иметь выпуклый многогранник? Почему не может быть 7 ребер?
Транксрипт:

Сфера, описанная вокруг многогранника Курышова Н.Е. СПб лицей 488

Определение: Многогранник называется вписанным в сферу (вписанным в шар), если все вершины многогранника принадлежат этой сфере. Про сферу в этом случае говорят, что сфера описана около многогранника.

Вспомним, что множество точек, равноудалённых от концов отрезка в плоскости, есть серединный перпендикуляр, проведённый к этому отрезку. А ВС АВ=ВС m Выясним, в какой точке будет находиться центр такой сферы.

Множество точек, равноудалённых от двух данных точек, есть плоскость, перпендикулярная к отрезку с концами в данных точках, проходящих через его середину (плоскость серединных перпендикуляров). А В С АВ=ВС А так же

Множество точек, равноудалённых от «n» данных точек («n» больше 2), лежащих на одной окружности, есть прямая, перпендикулярная плоскости этих точек, проходящая через центр описанной около них окружности. А В С D E O m Значит центр сферы будет лежать на прямой m.

Значит, около любой треугольной пирамиды можно описать сферу. АВ С M H O Посмотри, как описать сферу, вокруг треугольной пирамиды

Если около основания пирамиды можно описать окружность, то около этой пирамиды можно описать сферу. Следствие: Около любой правильной пирамиды можно описать сферу. АВ С D M O H Делаем вывод:

Центр сферы, описанной около пирамиды, высота которой проектируется в центр описанной окружности вокруг основания, лежит на середине диаметра, проведённого через центр этой окружности, перпендикулярно ей. А В С D Е 2R H r 2R-H Так как Н – центр сферы, то НВ=НА, значит Н лежит на серединном перпендикуляре, проведенному к АВ.

Центр сферы, описанной около пирамиды лежит в точке пересечения прямой перпендикулярной основанию пирамиды, проходящей через центр описанной около основания окружности и плоскости, перпендикулярной любому боковому ребру, проведённой через середину этого ребра. Значит, что

Спасибо за внимание!