«П ОВТОРЕНИЕ. Р ЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ ». Проект урока алгебры в 11 классе Учитель Богдашкина В.А. С. Троицкое, 2014 год.

Презентация:



Advertisements
Похожие презентации
Повторение алгебры в 11 классе ( подготовка к ЕГЭ ) Учитель Богдашкина В. А. С. Троицкое, 2012 год.
Advertisements

Способы решения тригонометрических уравнений Уравнения, приводимые к квадратным уравнениям Уравнения, приводимые к квадратным уравнениям Однородные уравнения.
Решение тригонометрических уравнений Мишурова Любовь Александровна, учитель математики Муниципальное общеобразовательное учреждение «Средняя общеобразовательная.
Презентация к уроку по алгебре (10 класс) на тему: Презентация к уроку Методы решения тригонометрических уравнений
Тема урока: «Решение тригонометрических уравнений» ГАОУ НПО «ОКТУ» г. Обнинск Червакова Ирина Валериевна 1 курс.
Методы решения тригонометрических уравнений. Устная работа Решите уравнения А) 3 х – 5 = 7 Б) х 2 – 8 х + 15 = 0 В) 4 х 2 – 4 х + 1= 0 Г) х 4 – 5 х 2.
Решение тригонометрических уравнений и неравенств.
Методы решения тригонометрических уравнений Метод замены переменной Этот метод хорошо известен, он часто применяется при решении различных уравнений. Покажем.
Нет ли ошибки? Разложить на множители Урок обобщения по теме «Решение тригонометрических уравнений и неравенств»
ТРИГОНОМЕТРИЧЕСКИЕУРАВНЕНИЯ. Верно ли, что: Имеют ли смысл выражения:
Cos x + sin x =a Повторить формулы для решения простейших тригонометрических уравнений. Закрепить навык решения тригонометрических уравнений.
РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ Учитель: Копеина Наталья Васильевна 10 класс МОУ «Киришский лицей»
Урок в 10 классе на тему «Примеры решения тригонометрических уравнений»
УРОК АЛГЕБРЫ В 1О-М КЛАССЕ ТЕМА: «Решение тригонометрических уравнений (с использованием информационных технологий)»
План-конспект урока по алгебре (10 класс) по теме: урок в 10 классе «Отбор корней при решении тригонометрических уравнений, используя свойство периодичности тригонометрических функций»
Типы тригонометрических уравнений и методы их решения.
Кроссворд. Значение переменной, обращающее уравнение в верное равенство Единица измерения углов Числовой множитель в произведении Раздел математики, изучающий.
ПРИМЕРЫ РЕШЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ Верно ли, что:
Презентация к уроку по алгебре (10 класс) по теме: Методы решения тригонометрических уравнений, урок алгебры в 10 классе
Способы решения тригонометрических уравнений. Содержание I.ВведениеВведение II.Способы решения: 1) Замена переменнойЗамена переменной 2) Решение однородных.
Транксрипт:

«П ОВТОРЕНИЕ. Р ЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ ». Проект урока алгебры в 11 классе Учитель Богдашкина В.А. С. Троицкое, 2014 год

Ц ЕЛИ УРОКА : -Создания условий для осознанного усвоения решения тригонометрических уравнений. -Формирование навыков самоконтроля и взаимоконтроля. -Развитие устной математической речи. Обеспечение условий для развития умения решать тригонометрические уравнения, совершенствовать мыслительные умения старшеклассников: сравнивать, обобщать и анализировать

Устный счет х у 0 0 рад П/2 П - П/2 3п/2 Sin x = 1 cos x = 0 sin x = - 1 tg x = 0 cos x = 1 ctg x =0 sin x = ½ cos x =3/2 sin x = - 3/2 cos x = -1/2

С ПОСОБЫ РЕШЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ Уравнения, приводимые к квадратным уравнениям Однородные уравнения Разложение на множители Замена переменной Метод вспомогательного угла Понижение степеней

Определите вид уравнения и укажите способ его решения: а) sin x = 2 cos x; б) sin x + cos x = 0; в) 4 cos 3x + 5 sin 3x = 0; cos²x + 3 sin²x = 0; г) 1 +7 cos²x + 3 sin²x = 0; д) sin 3x – cos 3x = 0; д) sin 3x – cos 3x = 0; е) sin x cos x + cos²x е) sin x cos x + cos²x = 0

О ДНОРОДНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

a sin x + b cos x = 0, где a 0, b 0. При делении уравнения a sin x + b cos x = 0, где a 0, b 0 на cos x 0 корни этого уравнения не теряются. sin²x+cos²x аsin²x+ bsinx cosx + ccos²x= 0 где а 0, b 0, с 0. sin²x cos²x если в этом уравнении есть одночлен аsin²x, то делим уравнение на cos²x 0 (так как sinх и cosх одновременно не могут равняться 0). cos²x b sin x cos x + c cos²x = 0, где b 0, с 0. sin²x (т.е. в уравнении нет одночлена a sin²x), то уравнение решается путем разложения на множители.

О ДНОРОДНЫЕ УРАВНЕНИЯ 3sin²x+sinx cos x=2cos²x Делим на sin²x обе части уравнения 3+cosx/ sinx=2cos²x/sin²x Известно,что ctg x= cos x/sin x Получим 3+ctgx=2ctg²x Пусть a=ctg x 3+a=2a² 2a²-a-3=0 a 1 =1,5 a 2 =-1 Получим ctg x=1,5 ctg x=-1 X=arcctg1,5+Пn x=3П/4+Пm

Р ЕШИТЬ УРАВНЕНИЕ sin²x - cos²x = cos4x

Р ЕШЕНИЕ. sin²x-cos²x =cos4x, - (cos² - sin²x )=cos4x, -cos2x = cos²2x - sin²2x, -cos2x = cos²2x – ( 1 - cos²2x), -cos2x - cos²2x +1 - cos²2x = 0, -2cos²2x – cos2x +1 = 0, 2cos²2x + cos2x -1 = 0. Заменим сos2x на У, где |У| 1 Тогда 2 у² +у -1 = 0, D =1 - 42(-1) =9, У =1/ 2, у = -1. Выполним обратную замену Cos2x =1/ 2, cos2x = -1, 2x = П+2Пn, n Z, 2x =±arccos1/2 =2Пn, n Z, x=П/2+Пn, n Z. 2x ±П/3 +2Пn. n Z, X =±П/6+Пn, n Z. Ответ: X =±П/6+Пn, x=П/2+Пn, n Z.

Решение простейших уравнений Решим уравнение Уравнение однородное, так как степени слагаемых, содержащих переменные одинаковые

Р ЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ ВИДА

Р ЕШИТЬ УРАВНЕНИЕ

Проверьте себя: Здесь Поделим обе части уравнения на 5: Введем вспомогательный аргумент, такой, что,. Исходное уравнение можно записать в виде, откуда Ответ:

З АМЕНА ПЕРЕМЕННОЙ 2(1+tgx) - 3 =5 1+tgx Пусть y=1+tgx 2y - 3 =5 Y 2y²-3=5y y0 2y²-5y-3=0 y1=3, y2=-0,5 1+tgx=3 1+tgx=-0,5 tgx=2 tgx=-1,5 X 1=arctg2+Пn x 2=-arctg1,5+Пk

Р АЗЛОЖЕНИЕ НА МНОЖИТЕЛИ 4sin²x-sin2x=0 4sin²x-2sinx cosx=0 2sinx(2sinx-cosx)=0 Sinx=0 или 2sinx-cosx=0 x1=Пn 2sinx - cosx=0 sinx sinx 2-ctgx=0 ctgx=2 X2=arcctg2+Пk

М ЕТОД ВСПОМОГАТЕЛЬНОГО УГЛА Cos3x+sin3x=1 A²+B²=1²+1²=2 Делим обе части уравнения на 2 1 cos3x+1 sin3x= Пусть cosφ=1/2, sinφ=1/2,φ=П/4 cosφ cos3x+sinφ sin3x=1/2 Cos(3x-φ)=1/2 3x-φ=±П/4+2Пn 3x=±П/4+φ+2Пn, X=±П/12+П/12+2Пn/3

П ОНИЖЕНИЕ СТЕПЕНЕЙ 4 4 Sin x+cos x=1/2 (Sin²x)²+(cos²x)²=1/2 Известно, что sin²(x/2)=1-cosx, cos²(x/2)= 2 =1+cosx 2 1-cos2x ²+ 1+cos 2x ² = cos2x+cos²2x+1+2cos2x+cos²2x=2 2cos²x=0 cosx=0 X=П/2+Пn

Спасибо за работу!!!