Тренировочная работа 1 Умножим обе части уравнения на (-1) Обозначим cos x = t, -1 t 1; сos x = 1,х = 2πn, n Є Z. Это есть решение нашего уравнения.
Если в квадратном уравнении а + b + с = 0, то один из корней равен 1, а второй по теореме Виета равен
Итак 2 вопрос: надо указать корни, принадлежащие отрезку Решив уравнение, мы получили корни: Первый способ решения: n = 0 n = 1 n = 2 n = 3 или Ответ: Отрезку принадлежат корни
Второй способ решения: х х = 0, х =2π, х = 4π, x=6π … не принадлежат данному отрезку. Ответ:
Третий способ решения : 2 В первой серии корней нет корней, принадлежащих данному отрезку. n целое число, n =1. Во второй серии корней найдем корни, принадлежащие данному отрезку n =1. n = 1 и n = 2.
Четвертый способ решения: π2π2π3π3π Эти корни, не принадлежат данному отрезку. Эти корни, => принадлежащие данному отрезку Ответ: