Объем конуса 11 класс. Теорема Объем конуса равен одной трети произведения площади основания на высоту. h х х O A A1A1A1A1 М М1М1М1М1 R R1R1R1R1.

Презентация:



Advertisements
Похожие презентации
Объем конуса. Работу выполнили Ученицы 11 класса МОУ «Тугустемирская СОШ» Кудряшова Наташа Дусаева Гульнара.
Advertisements

Объем наклонной призмы, пирамиды и конуса.. Теорема: Объем конуса равен одной трети произведения площади основания на высоту. Дано: конус, объем = V,
К о н у с. Понятие конуса. Площадь поверхности конуса. Объем.
МОУ «СОШ 2 г.Нариманов». V = a x b x Ф(x) x =a x x x x b = x x Ф(x ) Ф(x ) Основная формула для вычисления объемов i-1 I n 1 2 I n.
Тела вращения Телом вращения называется такое тело, которое плоскостями, перпендикулярными некоторой прямой (оси вращения), пересекается по кругам с центрами.
Работу выполнили:Шабалина Мария и Ганджалян Жанна Преподаватель геометрии: Хайбрахманова Г.Ф.
Тело, ограниченное конической поверхностью и кругом с границей L, называется конусом. Круг называется основанием конуса, вершина конической поверхности.
ГЕОМЕТРИЯ КОНУС, УСЕЧЕННЫЙ КОНУС. P O Образующая Окружность Ось Вершина Центр окружности.
Призма Определение призмы: А1А2…АnВ1В2Вn– призма Многоугольники А1А2…Аn и В1В2…Вn – основания призмы Параллелограммы А1А2В2В1, А1А2В2В1,… АnА1В1Вn – боковые.
ОБЪЕМЫ НАКЛОННОЙ ПРИЗМЫ, ПИРАМИДЫ, КОНУСА Геометрия 11 класс Р.О.Калошина ГОУ лицей 533 Санкт-Петербург.
Объёмы тел Свойства: 1.Равные тела имеют равные объёмы. Объём всего тела складывается из объёмов составляющих его тел. 2.Если тело составлено из нескольких.
Презентация на тему: «Призма». Содержание:Содержание: 1.) О ОО Определение призмы. 2.) виды призм: - прямая призма; - наклонная призма; - правильная призма;
Тема урока. Конус. 1.Понятие конуса. 2.Площадь поверхности конуса.
Объём шара, шарового сегмента, шарового слоя и шарового сектора.
Цилиндр: история Слово "цилиндр" происходит от греческого kylindros, что означает "валик", "каток " … Слово "цилиндр" происходит от греческого kylindros,
Геометрия. ЗАДАЧА 556 Черников Дмитрий 11 «А» класс 2011 г.
Радиус образующая высота. Получение Конус может быть получен вращением прямоугольного треугольника вокруг одного из катетов. С Вершина Основание.
Объемы пространственных фигур фигурВычисление объемов геометрических тел с помощью определенного интеграла.
Решение задач на нахождение объема конуса Урок А.
Объем наклонной призмы, пирамиды и конуса.. Теорема: Объём пирамиды равен одной трети произведения площади основания на высоту h M x A1A1 C1C1 C M1M1.
Транксрипт:

Объем конуса 11 класс

Теорема Объем конуса равен одной трети произведения площади основания на высоту. h х х O A A1A1A1A1 М М1М1М1М1 R R1R1R1R1

Доказательство Д Дано: конус с объемом V, радиусом основания R, высотой h и вершиной в точке О. Введем ось ОХ (ОМ – ось конуса). Произвольное сечение конуса плоскостью, перпендикулярной к оси ОХ, является кругом с центром в точке М1 - пересечения этой плоскости с осью ОХ. Обозначим радиус этого круга через R1, а площадь сечения через S(х), где х – абсцисса точки М1. h х х A A1A1A1A1 М М1М1М1М1 R R1R1R1R1 O ΔОМА~ΔОМ1А1

Применяя основную формулу для вычисления объемов тел при а=0, b=h, получаем h х х A A1A1A1A1 М М1М1М1М1 R R1R1R1R1 O Площадь S основания конуса равна ПR², поэтому Следствие Объем V усеченного конуса, высота которого равна h, а площади оснований равны S и S1, вычисляется по формуле

Домашнее задание п. 81, 701, 704