Повторение теории. 1) Какая функция называется возрастающей? 2) Какая функция называется убывающей? 3) Как связан знак производной с возрастанием и убыванием.

Презентация:



Advertisements
Похожие презентации
Сальтяшева А.И., ГБОУ НПО ПУ 19, г.Салават.
Advertisements

Исследование функций и построение графиков с помощью производной.
практическое применение знаний и умений с использованием компьютерных технологий.
Тема урока: применение производной к исследованию функции Цели учебного занятия: Сегодня нам с вами нужно повторить опорные понятия, определения и теоремы.
Применение производной к исследованию функций. Достаточное условие возрастания функции Если в каждой точке интервала (a, b) f'(x)>0, то функция f(x) возрастает.
Общая схема исследования функции и построения графика.
Исследование функции с помощью производной. Урок проверки и коррекции знаний и умений.
Первая производная Вторая производная План. Первая производная Если производная функция положительна (отрицательна) в некотором интервале, то функция.
Что называется функцией? Если каждому значению переменной Х из некоторого множества D соответствует единственное значение переменной У, то такое.
Применения производной к исследованию функций Применения производной к исследованию функций.
Критические точки функции Точки экстремумов Алгебра-10.
Свойства функций Область определения, множество значений, четность, нечетность, периодичность.
11 класс экстернат. Производная Производной функции f в точке х0 называется число, к которому стремится разностное отношение при Δх, стремящемся к нулю.
Достаточный признак возрастания функции. Если f '( х )>0 в каждой точке интервала I, то функция f возрастает на этом интервале. Достаточный признак убывания.
ВОЗРАСТАНИЕ ФУНКЦИЙ Функция называется возрастающей на интервале, если большему значению аргумента из этого интервала соответствует большее значение функции,
Автор презентации: учитель математики МБОУ«Малошильнинская СОШ» Тукаевского района Республики Татарстан Киямова Фируза Мухамматовна.
СХЕМА ИССЛЕДОВАНИЯ ФУНКЦИИ С ПОМОЩЬЮ ПРОИЗВОДНОЙ 1.Найти область определения функции. 2.Выяснить, является ли функция чётной или нечётной, периодической.
{ интервалы монотонного возрастания и убывания функции - выпуклость функции на промежутке - точки перегиба - асимптоты - построение графика функции }
Лекция 5 для студентов 1 курса, обучающихся по специальности – Медицинская кибернетика к.б.н., доцент Попельницкая И.М. Красноярск, 2014 Тема: Приложения.
Приложение производной к исследованию функции. План I. Исследование функции на монотонность: 1. Определение монотонности 2. Необходимый и достаточный.
Транксрипт:

Повторение теории. 1) Какая функция называется возрастающей? 2) Какая функция называется убывающей? 3) Как связан знак производной с возрастанием и убыванием функции? 4) Что называется точкой максимума? 5) Что называется точкой минимума? 6) Какие точки называются стационарными? 7) Какие точки называются критическими? 8) Каков алгоритм нахождения наибольшего и наименьшего значений непрерывной на заданном отрезке функции?

Достаточный признак возрастания функции Если функция f имеет неотрицательную производную в каждой точке интервала (а;b), то функция f возрастает на интервале (а;b).

Достаточный признак убывания функции Если функция f имеет неположительную производную в каждой точке интервала (а;b), то функция f убывает на интервале (а;b).

Необходимое условие экстремума (Теорема Ферма) Если точка х 0 является точкой экстремума функции f и в этой точке существует производная f `(x), то она равна нулю: f `(x) = 0.

Признак максимума функции Если функция f непрерывна в точке х 0, а f `(x) > 0 на интервале (а; х 0 ), и f `(x) < 0 на интервале (х 0 ; b), то точка х 0 является точкой максимума функции f. Если в точке х 0 производная меняет знак с плюса на минус, то точка х 0 максимума. X Y

Признак минимума функции Если функция f непрерывна в точке х 0, f `(x) 0 на интервале (х 0 ; b), то точка х 0 является точкой минимума функции f. Если в точке х 0 производная меняет знак с минуса на плюс, то х 0 есть точка минимума. X Y

Практическая работа Найти промежутки возрастания и убывания функции, точки экстремума Найти промежутки возрастания и убывания функции, точки экстремума

1. Какова область определения функции? 2. Найдите область определения функции

3. Какая это функция: четная или нечетная? 3. Какая это функция: четная или нечетная?

«Найди ошибки» 1. Изображён график производной. Точки х=-1, х=1, х=2 являются точками максимума. 2. Производная функции в точке хо равна 0, значит хо - критическая точка. Верно ли? 3. Производная функции не существует в точке хо, значит хо - критическая точка. Верно ли? 4. Критическая точка является точкой экстремума. Верно ли? 5. Точка экстремума является критической точкой. Верно ли? 6. Функция y(x) непрерывна в точке x=4, причем y' (x)>0 на (1;4) и y'(x)

х у 0 х у График выпуклый f `(x) – убывает f ``(x) < 0 График вогнутый f `(x) – возрастает f ``(x) > A1A1 A2A2 A1A1 A2A2

Задание: Найти экстремумы функции. 1.вар 1) y = x 3 + 6x x - 3 2) y = 2х - x² 3) y = x/4 + 9/x 4) y = x/4 + 4/x 5) y = x – х 4 /4 6) y = x 3 - 6x x + 7 7) у = х³-6х² 2.вар. 1) y = x 3 + 6x x - 3 2) y = 2х - x² 3) y = x/4 + 9/x 4) y = x/4 + 4/x 5) y = 8x – х 4 /4 6) y = x 3 - 6x x + 7 7) у = х³-6х²

СХЕМА ИССЛЕДОВАНИЯ ГРАФИКА ФУНКЦИИ Найти область определения функции. (Указать множество значений переменной х, при которых данная функция определена). Найти область определения функции. (Указать множество значений переменной х, при которых данная функция определена). Исследовать функцию на четность. (Выяснить, симметрична ли область определения функции относительно начала координат и найти y = f(-x). Если f(-x) = f(x), то функция четная, если y f(-x) = -f(x), то функция нечетная). Исследовать функцию на четность. (Выяснить, симметрична ли область определения функции относительно начала координат и найти y = f(-x). Если f(-x) = f(x), то функция четная, если y f(-x) = -f(x), то функция нечетная). Найти нули функции. (Точки пересечения с осями координат). Найти нули функции. (Точки пересечения с осями координат). Исследовать функцию на монотонность. (Если f (x) > 0, то функция возрастает, если f (x) 0, то функция возрастает, если f (x) < 0, то функция убывает). Записать точки экстремума и экстремумы функции. (Найти значение функции в точках экстремума). Записать точки экстремума и экстремумы функции. (Найти значение функции в точках экстремума). Дополнительные точки. Дополнительные точки. Построение графика. Построение графика.

ПРИМЕР

Исследовать функцию и построить график Исследовать функцию и построить график

ПРАКТИЧЕСКАЯ РАБОТА Найти интервалы выпуклости и точку перегиба, если

ТВОРЧЕСКОЕ ЗАДАНИЕ Я – функция сложная, это известно, Еще расскажу, если вам интересно, Что точку разрыва и корень имею, И есть интервал, где расти не посмею. Во всём остальном положительна, право, И это, конечно, не ради забавы. Для чисел больших я стремлюсь к единице. Найдите меня среди прочих в таблице.