Определение вероятности Классическое и статистическое определение вероятности.

Презентация:



Advertisements
Похожие презентации
Вероятностные задачи. Статистические задачи. Определение вероятности При классическом определении вероятность события определяется равенством Р(А) = m.
Advertisements

События А и В несовместны, если они не имеют общих благоприятствующих элементарных событий: А В = (пустое событие). Вероятность пересечения несовместных.
Пример: выпадение герба и решки при однократном бросании монеты. Два события называются несовместными, если они не могут произойти в одном опыте.
Тема 2 Операции над событиями. Условная вероятность План: 1.Операции над событиями. 2.Условная вероятность.. Если и, то Часто возникает вопрос: насколько.
Элементы комбинаторики, статистики и теории вероятности.
Бросают одну игральную кость. Событие А- «выпало четное число очков» Событие В состоит в том, что: а) выпало число очков, кратное 3; б) выпало нечётное.
Теория вероятностей и статистика Работа Силаева Леонида 8А.
1 Случайное событие. Вероятность события. 2 Теория вероятностей – математическая наука, изучающая закономерности в случайных явлениях. Под опытом (экспериментом,
События которые нельзя разделить на более простые, называются элементарными событиями. Пример: Опыт: подбрасывание одной игральной кости Элементарные.
Составили: учащиеся 5 «а» класса МОУ СОШ 172 Г. Нижний Новгород Научный руководитель: Кирпичева Е.Е.
Событие, противоположное событию А – событие, которому благоприятствуют все элементарные события, не благоприятствующие событию А. Обозначение: А Если.
«Простейшие вероятностные задачи».. Замечательно, что наука, которая начала с рассмотрения азартных игр, обещает стать наиболее важным объектом человеческого.
Автор: Яковлева Екатерина. Об авторе Ученица 8 «А» средней школы 427. Яковлева Екатерина Александровна Дата рождения года. Проект по Теории.
Тема урока: «Простейшие вероятностные задачи». 11 класс.
Задача 1 Задача 1 Какова вероятность того, что при бросании игральной кости выпадает число очков, больше 4?Какова вероятность того, что при бросании игральной.
Математическая модель «игральная кость» Выпадение каждой грани при многократном бросании кубика имеет одинаковую вероятность Испытание – бросание игральной.
Учитель математики: Пелихова В.И. МКОУ «Новоусманский лицей» Простейшие вероятностные задачи.
Блок 2.Простейшие правила и формулы вычисления вероятностей Выполнила: учитель МОУ Вохомская СОШ Адеева Г.В.
Кафедра математики и моделирования Старшие преподаватели Е.Д. Емцева и Е.Г. Гусев Курс «Высшая математика» Лекция 9. Тема: Случайное событие. Вероятность.
Вероятность события 9 класс. Встречаясь в жизни с различными событиями, мы часто даем оценку степени их достоверности. При этом произносим. Например,
Транксрипт:

Определение вероятности Классическое и статистическое определение вероятности

При классическом определении вероятность события определяется равенством Р(А) = m/n, где m – число элементарных исходов испытания, благоприятствующих появлению события А; n - общее число возможных элементарных исходов испытания. Предполагается, что элементарные исходы образуют полную группу и равновозможны. Относительная частота события А определяется равенством W(A)=m/n, где m - число испытаний, в которых событие А наступило; n - общее число произведённых испытаний. При статистическом определении в качестве вероятности события принимают его относительную частоту.

Задача 1 Брошены две игральные кости. Найти вероятность, что сумма очков на выпавших гранях – чётная, причём на грани хотя бы одной из костей появится шестёрка. Решение. На выпавшей грани «первой» игральной кости может появиться одно очко, два очка, …, шесть очков. Аналогичные шесть элементарных исходов возможны при бросании «второй» кости. Каждый из исходов бросания «первой» кости может сочетаться с каждым из исходов бросания «второй». Таким образом, общее число возможных элементарных исходов испытания равно 6 * 6 = 36. Эти исходы образуют полную группу и в силу симметрии костей равновозможны.

Продолжение задачи 1 Благоприятствующими интересующему нас событию ( хотя бы на одной грани появится шестёрка, сумма выпавших очков - чётная) являются следующие пять исходов ( первым записано число очков, выпавших на «первой» кости, вторым – число очков, выпавших на «второй» кости; далее найдена сумма очков): 1)6, 2; 6+2=8, 2) 6,4; 6+4=10, 3) 6, 6; 6+6=12, 4) 2, 6; 2+6=8, 5) 4, 6; 4+6=10. Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех возможных элементарных исходов: Р = 5/36. Ответ: 5/36.

Задача 2 При перевозке ящика, в котором содержались 21 стандартная и 10 нестандартных деталей, утеряна одна деталь, причем неизвестно какая. На удачу извлеченная (после перевозки) из ящика деталь оказалась стандартной. Найти вероятность того, что была утеряна: а) стандартная деталь; б) нестандартная деталь.

Решение а) извлеченная стандартная деталь, очевидно, не могла быть утеряна; могла быть потеряна любая из остальных 30 деталей ( =30), причем среди них было 20 стандартных (21-1=20). Вероятность того, что была потеряна стандартная деталь, Р=20/30=2/3. б) среди 30 деталей, каждая из которых могла быть утеряна, было 10 нестандартных. Вероятность того, что была потеряна нестандартная деталь, Р=10/30=1/3.