Cредняя линия треугольника, средняя линия трапеции.

Презентация:



Advertisements
Похожие презентации
Cредняя линия треугольника, средняя линия трапеции.
Advertisements

Первый признак подобия треугольников Выполнил ученик 8 в класса Тимофеев Тимофей.
Первый признак подобия треугольников. Вспомним подобные треугольники : Определение: треугольники называются подобными, если углы одного треугольника равны.
Второй признак подобия треугольников. Вспомним подобные треугольники: Определение: треугольники называются подобными, если углы одного треугольника равны.
Второй признак равенства треугольников. Равные треугольники Определение 1: треугольники называются равными, если при наложении они совпадают. А В С А1А1.
Третий признак подобия треугольников. Вспомним подобные треугольники: Определение: треугольники называются подобными, если углы одного треугольника равны.
Вписанный угол. Определение. Угол, вершина которого лежит на окружности, а стороны пересекают её, называется вписанным. В А С АВС - вписанный А В С Е.
Подобные треугольники. Подобные треугольники. Геометрия, 8 класс.
Средняя линия треугольника Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. А В С РМ К МР, РК, КМ- средние линии треугольника.
А С В Е S К О 5х 2х В равнобедренном треугольнике точка Е -середина основания АС, а точка К делит сторону ВС в отношении 2:5, считая от вершины С. Найдите.
d > r a - прямая d < r c - секущая Взаимное расположение прямой и окружности d = r b - касательная А – точка касания d – расстояние от центра окружности.
Теоремы Чевы и Менелая. Учитель математики МБОУ сош28 г.Балаково Покатилова Н.А.
Презентация к уроку по геометрии (10 класс) по теме: Презентация. Параллельность прямых и плоскостей.
Применение подобия к доказательству теорем и решению задач.
Медиана, биссектриса и высота треугольника. Составила учитель математики МОУ « СОШ 18» г. Электросталь Графуткина Галина Ивановна.
Пропорциональные отрезки в прямоугольном треугольнике.
Геометрия 8 класс.. Содержание Четырехугольники Многоугольники Параллелограмм Трапеция Теорема Фалеса Прямоугольник Ромб Квадрат Осевая и центральная.
Подобие треугольников. Урок геометрии в 9 классе Шиковская средняя школа Островского района Псковской области Учитель: Яковлева Татьяна Викторовна.
Теорема Фалеса. Трапеция.. Задача Точки М и N середины сторон параллелограмма АВСД соответственно. Отрезки ВМ и ДN пересекают диагональ соответственно.
1.1. Пропорциональные отрезки Определение подобных треугольников 1.2. Определение подобных треугольников 1.3. Отношение площадей подобных треугольников.
Транксрипт:

Cредняя линия треугольника, средняя линия трапеции.

Определение: средней линией треугольника называется отрезок, соединяющий середины двух его сторон. АК = КС ВЕ = СЕ КЕ – средняя линия АВС Определение: средней линией трапеции называется отрезок, соединяющий середины боковых её сторон. А ВС К Н Е АН = НВ КЕ = СЕ НЕ – средняя линия АВСК А В С К Е Сколько средних линий в треугольнике? Сколько средних линий в трапеции?

Средняя линия треугольника Теорема. Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны. А С В М К Дано: АВС, МК – средняя линия Доказательство: Т. к. по условию МК – средняя линия, то АМ = МВ = ½ АВ, СК = КВ = ½ ВС, Значит, ВМ АВ ВК ВС 1 2 В – общий для АВС и МВК,, значит, АВС и МВК подобны по второму признаку подобия, следовательно, ВМК = А, значит, МК АС. Доказать: МК АС, МК = ½ АС МК АС 1 2 Из подобия треугольников также следует, что, т. е. МК = ½ АС.

Реши задачу F R N ? А В

Реши задачу 2. 2,7 ? М А В С К

Реши задачу 3. С А В К Р Дано: АВ = 1 дм, АС = 6 см АК = КС АР = РВ Найти: КР

Нужное свойство медиан треугольника Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2 : 1, считая от вершины. А В С А1А1 В1В1 С1С1 О Дано: АВС АА 1, ВВ 1, СС 1 – медианы. Доказать: С1ОС1О АОВОСО А1ОА1ОВ1ОВ1О 2 1

Доказательство: Проведём А 1 В 1 А В С А1А1 В1В1 О С1С1 По условию АА 1, ВВ 1 – медианы значит, ВА 1 = СА 1, АВ 1 = СВ 1, т. е. А 1 В 1 – средняя линия. Значит, А 1 В 1 АВ, поэтому 1 = 2, 3 = 4. Следовательно, треугольники АОВ и А 1 ОВ 1 подобны по двум углам. Значит, их стороны пропорциональны: АО ВО АВ А1ОА1О В1ОВ1О А1В1А1В1 По свойству средней линии треугольника АВ = 2 А 1 В 1, т. е. АО ВО АВ А1ОА1О В1ОВ1О А1В1А1В1 2 1 Аналогично, СО С1ОС1О 2 1 Получим: С1ОС1О АОВОСО А1ОА1ОВ1ОВ1О 2 1

Средняя линия трапеции Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме. А В С К М Р Дано: АВСК – трапеция МР – средняя линия Доказать: МР АК, МР ВС МР = Доказательство: О Проведём через точку М прямую МЕ АК, докажем, что МЕ пройдёт через Р. Т. к. АВСК – трапеция, то ВС АК, а, значит, ВС МЕ АК Т. к. МР – средняя линия, то АМ= МВ, КР = СР Е Следовательно, МР лежит на МЕ, значит, МР АК, МР ВС. Проведём ВК. По теореме Фалеса О – середина ВК, значит, МО – средняя линия АВК, ОР – средняя линия ВСК МР = МО + ОР = ½ АК + ½ ВС = ½ ( АК + ВС) = По теореме Фалеса МЕ пересечёт СК в середине СК, т. е. в точке Р.

Реши задачу 7 А В С К О Е 15 Найти длину средней линии ОЕ трапеции АВСК по данным на чертеже:

Реши задачу Найти длину верхнего основания трапеции УСРН по данным на чертеже: У С Р Н А В 9 4

Реши задачу Найти площадь трапеции УСРН по данным на чертеже: У С Р Н А В 9 К 6

Михайлова Л. П. ГОУ ЦО 173.