Химический элемент и его роль в организме. Многие учёные считают, что в живом организме не только присутствуют все химические элементы, но каждый из них.

Презентация:



Advertisements
Похожие презентации
Минеральные вещества и вода в пищевых продуктах. Выполнила: Морозова Т.С.
Advertisements

«Химические элементы в организме человека». Цель работы: изучить, какие химические элементы входят в состав организма человека и какое их количество необходимо.
Лекция 2. НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА Содержание химических элементов в организме. 2. Вода и её роль в живых организмах. 3. Минеральные соли и кислоты.
Химические элементы в организме человека. Автор: Ванкевич Кирилл Владимирович. УО ”БГУИР“ филиал “Минский радиотехнический колледж”
Работу выполнила : Паршакова Полина Научный руководитель: учитель химии Вилисова А.В. Пермь 2012 г.
Неорганические вещества, входящие в состав клетки.
СРС на Тему: «ОБМЕН ЖЕЛЕЗА» Выполнила: Досжанова А.
ОБМЕН ЖЕЛЕЗА. Железо входит в состав гемсодержащих белков, а также металлофлавопротеинов, железосерных белков, трансферрина, ферритина. 1. Источником.
Химические элементы в нашем организме. Автор: Георгиева Татьяна Григорьевна Учитель химии и экологии МОУ «Благоевская СОШ» п.Благоево Республика Коми.
Работу выполнила ученица 9 А класса ГОУ СОШ 546 г. Москвы Коломиец Екатерина Руководитель: учитель химии ГОУ СОШ 546 Симонова Т.В. Научная презентация.
Металлы- наши друзья или враги?. Натрий (Na) Натрий (Na) участвует в образовании желудочного сока. Р егулирует выделение почками многих продуктов обмена.
П РЕЗЕНТАЦИЯ : «З ДОРОВЫЙ ОБРАЗ ЖИЗНИ » Минеральные соли Работу выполняли: Апанасенко Анастасия, Лазарчук Ольга ученицы 11 «Б»
Химический состав клетки. План урока 1. Химический состав клетки. 2. Классификация минеральных веществ (по содержанию в клетке). 3. Роль макро и микроэлементов.
В составе клетки обнаружено более 80 химических элементов, при этом каких- либо специальных элементов, характерных только для живых организмов, не выявлено.
Презентация по химии в медицине: Физиологическая и патологическая роль железа(Fe) в организме человека Работу выполнили студентки 210 группы: Орехова Оксана;
Химический состав клетки. Неорганические соединения.
Цель работы: Изучить влияние кислорода и углекислого газа на здоровье человека.
Значение пищи. Основные и дополнительные вещества пищи: Из тысяч веществ, поступающих в организм с пищей, основными являются белки, жиры, углеводы, минеральные.
Биологическая роль металлов.. Минералы принимают участие: Контролируют водные баланс Активируют ферментные системы.
Химические элементы и здоровье человека
Транксрипт:

Химический элемент и его роль в организме

Многие учёные считают, что в живом организме не только присутствуют все химические элементы, но каждый из них выполняет определённую биологическую функцию. Достоверно установлена роль около 30 химических элементов, без которых организм человека не может нормально существовать. Эти элементы называют жизненно необходимыми. Организм человека состоит на 60% из воды, 34% приходится на органические и 6% – на неорганические вещества. Основными компонентами органических веществ являются углерод, водород и кислород, в их состав также входят азот, фосфор и сера. В неорганических веществах человека обязательно присутствуют 22 химических элемента:Ca, P, O, Na, Mg, S, B, Cl, K, V, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cr, Si, I, F, Se.

Кальций Большое содержание кальция в организме человека объясняется тем, что он в значительном количестве содержится в костях в виде гидроксофосфат кальция – Ca10(PO4)6(OH)2 и его суточное потребление составляет для взрослого человека мг. Концентрация ионов кальция в плазме крови поддерживается очень точно на уровне 9-11мг% и у здорового человека редко колеблется больше чем на 0,5мг% выше или нормального уровня, являясь одним из наиболее точно регулируемых факторов внутренней среды. Узкие границы, в пределах которых колеблется содержание кальция в крови, обусловлены взаимодействием двух гормонов – паратгормона и тирокальцитонина. Падение уровня кальция в крови приводит к усилению внутренней секреции околощитовидных желез, что сопровождается увеличением поступления кальция в кровь из его костных депо. Наоборот, повышение содержания этого электролита в крови угнетает выделение паратгормона и усиливает образование тирокальцитонина из парафолликулярных клеток щитовидной железы, в результате чего снижается количество кальция в крови.

Железо Несмотря на то, что содержание железа в человеке массой 70 кг не превышает 5г и суточное потребление 10 – 15мг, оно играет особую роль в жизни деятельности организма. Железо занимает совершенно особое место, так как на него не распространяется действие секреторной системы. Концентрация железа регулируется исключительно его поглощением, а не выделением. В организме взрослого человека около 65% всего железа содержится в гемоглобине и миоглобине, большая часть оставшегося запасается в специальных белках (ферритине и гемосидерине), и только очень небольшая часть находится в различных ферментах и системах транспорта.

Гемоглобин выполняет в организме важную роль переносчика кислорода и принимает участие в транспорте углекислоты. Общее содержание гемоглобина равно 700г, а кровь взрослых людей содержит в среднем около 14 – 15%. Гемоглобин представляет собой сложное химическое соединение (мол. вес ). Он состоит из белка глобина и четырёх молекул гема. Молекула гема, содержащая атом железа, обладает способностью присоединять и отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т. е. железо остаётся двухвалентным. Оксигемоглобин несколько отличается по цвету от гемоглобина, поэтому артериальная кровь, содержащая оксигемоглобин, имеет ярко - алый цвет. Притом тем более яркий, чем полнее произошло её насыщение кислородом. Венозная кровь, содержащая большое количество восстановленного гемоглобина, имеет тёмно – вишнёвый цвет. Метгемоглобин является окислительным гемоглобином, при образование которого меняется валентность железа: двухвалентное железо, входящее в молекулу гемоглобина, превращается в трёх валентное. В случае большого накопление в организме метгемоглобина отдача кислорода тканям становится невозможной и наступает смерть от удушения. Карбоксигемоглобин представляет собой соединение гемоглобина с угарным газом. Это соединение примерно в 150 – 300 раз прочнее, чем соединение гемоглобина с кислородом. Поэтому примесь даже 0,1% угарного газа во вдыхаемом воздухе ведёт к тому, что 80% гемоглобина оказываются связанными с окисью углерода и не присоединяют кислород, что является опасным для жизни. Гемоглобин и миоглобин.

Трансферрин. Трансферрин – класс железо связывающих молекул. Наиболее изученный- это трансферрин сыворотки – является транспортным белком, переносящим железо из обломков гемоглобина селезёнки и печени в костный мозг, где на специальных его участках вновь синтезируется гемоглобин. Весь сывороточный трансферрин, единовременно связывая только 4 мг железа, ежедневно переносит в костный мозг около 40мг железа – весьма существенное доказательство его эффективности как транспортного белка. Больные с генетически обусловленными нарушениями синтеза трансферрина страдают железодефицитной анемией, нарушениями иммунной системы и интоксикацией от избытка железа! Трансферрин – это гликопротеин с молекулярной массой около Он состоит из одной полипептидной цепи, свёрнутой так, что она образует два компактных участка, каждый из которых способен связывать по одному иону железа (III). Правда, связывание железа возможно лишь при связывание аниона. В отсутствие подходящего аниона катион железа не присоединяется к трансфферину. В большинстве случаев в природе для этого используется карбонат, хотя активировать центр связывание металла способны и другие анионы, например оксалат, малонат, и цитрат. Высокая устойчивость комплекса железа с трансферрином делает его отличным переносчиком, но зато и выдвигает проблему высвобождения железа из комплекса. Многие из хороших хелатирующих агентов малопригодны в качестве посредников при высвобождение железа. Наиболее эффективным из них оказался пирофосфат. Принимая во внимание существенную роль в связывание железа с транферрином, было бы логически предложить, что удаление аниона должно лежать в основе любого механизма высвобождение железа, однако никакой корреляции между способностью замещать карбонат в трансферриновом комплексе и их эффективностью как посредника в освобождение железа не найдено. В транспортной системе микробов отдача ионов железа переносчиком вызывается восстановлением их до Fe (II), но, как достоверно установлено, из трансферрина железо высвобождается в виде Fe (III)

Ферритин. В органах млекопитающих железо в основном запасается в двух формах – ферритине и гемосидерине. Гемосидерин изучен не достаточно хорошо и, возможно, является продуктом распада ферритина. Ферритин в настоящее время охарактеризован довольно полно. Это водо-растворимый белок, состоящий из 24 одинаковых субъединиц, которые составляют пустотелую сферическую оболочку. Во внутренней полости находится мицелярное ядро, содержание железа в котором примерно 57%. Мицела может содержать до 4500 атомов железа, если ферритин полностью насыщен железом (что не является обязательным). Белковую оболочку пронизывают шесть каналов, которые служат для приёма и отдачи железа.

Недостаток в организме меди приводит к деструкции кровеносных сосудов, патологическому росту костей, дефектам в соединительных тканях. Кроме того, считают, что дефицит меди служит одной из причин раковых заболеваний. В некоторых случаях поражение легких раком у людей пожилого возраста врачи связывают с возрастным понижением меди в организме. Многое известно и о транспорте меди в организме. Значительная часть меди находится в форме церулоплазмина. Содержание меди в организме варьируется от 100 до 150 мг с наибольшей концентрацией в стволе мозга. Большой расход меди ведёт к дефициту и неблагоприятен для человека. Прогрессирующие заболевание мозга у детей (синдром Менкеса) связано с дефицитом меди, так как при этом заболевание не хватает медьсодержащего фермента. Некоторые улучшения в состоянии этих больных было получено при введение меди. Избыточное количество меди в организме также неблагоприятно и ведет к развитию тяжелых заболеваний. При болезни Вильсона содержание меди увеличивается практически в 100 раз по сравнению с нормой. Медь обнаруживается во многих тканях, но особенно её много в печени, почках и мозге. Её можно увидеть на роговице в виде коричневых или зелёных кругов. В настоящие время установлено, что первоначально избыточные концентрации меди возникают в печени, затем в нервной системе, проявление расстройства этих органов наступают в том же порядке. Симптомы болезни Вильсона включают цирроз печен, нарушение координации, сильный тремор, прогрессирующие разрушение зубов. Степень выраженности симптомов зависит от количества содержание меди. Уменьшение клинической симптоматики может быть достигнуто использованием хелатирующих агентов, выводящих излишки запасов меди. Сам факт исчезновение симптомов после подобной терапии означает, что разрушение мозга является больше биологическим процессом, нежели структурным. Несмотря на генетически зависимую природу заболевания, отложение меди в тканях наблюдается не всегда. Медь откладывается в определённые медь протеины печени, при болезни Вильсона происходит нарушение в синтезе апоцерулоплазмина таким образом, что медь не может связываться с этими белками и начинает откладываться в других местах. Понятно, что это не может служить единственным объяснением, так как у ряда пациентов уровень церулоплазмина понижен незначительно. Кроме того, в больших количествах медь обнаруживается в печени новорождённых, причём 2% общего количества меди связано с белком. Через три месяца концентрация снижается до нормального уровня, с того времени печень способна синтезировать белок цирулоплазмин. Существует другая точка зрения на болезнь Вильсона: структура белка металлотеонина при болезни Вильсона нарушена, и это ведёт к повышенному связыванию ионов меди, что в свою очередь ведёт к нарушению запасов и транспорта меди в организме. У пациентов с болезнью Вильсона было продемонстрировано повышенное связывание меди металлотионеином. Медь

Цинк Большое значение для организма человека имеет цинк, в среднем в организме находится около 3г, а суточное потребление 15мг. Дефицит цинка у человека выражается в потере аппетита, нарушении в скелете и оволосении, повреждении кожи, замедлении полового созревания. В нескольких случаях дефицит цинка привёл у людей к большим нарушениям в сенсорном аппарате, выражавшимся в извращение: вкуса и запаха. У этих пациентов симптомы анорексии и нарушение физиологических отравлений могут быть сняты добавками цинка в рацион. Важную роль цинк играет в заживлении ран.

Кремний Кремний является также необходимым микроэлементом. Это было подтверждено тщательным изучением питания крыс с использованием различных диет. Крысы заметно прибавили в весе при добавлении метасиликата натрия (Na2(SiO)3. 9H2O) в их рацион (50мг на 100г). цыплятам и крысам кремний нужен для роста и развитие скелета. Недостаток кремния приводит к нарушению структуры костей и соединительной ткани. Как выяснилось кремний присутствует в тех участках кости, где происходит активная кальцинация, например в кости образующих клетках, остеобластах. С возрастом концентрация кремния в клетках падает. О том, в каких процессах участвует кремний в живых системах, известно мало. Там он находится в виде кремневой кислоты и, наверное, участвует в реакциях сшивки углеродов. У человека богатейшим источником кремния оказалась гиалуроновая кислота пуповины. Она содержит 1,53мг свободного и 0,36мг связанного кремния на один грамм.

Селен Недостаток селена вызывает гибель клеток мышц и приводит к мускульной, в частности сердечной, недостаточности. Биохимическое изучение этих состояний привело к открытию фермента глутатионпероксидазе, разрушающей пероксиды Недостаток селена ведет к уменьшению концентрации этого фермента, что в свою очередь вызывает окисление липидов. Способность селена предохранять от отравления ртутью хорошо известна. Гораздо менее известен тот факт, что существует корреляция между высоким содержанием селена в рационе и низкой смертностью от рака. Селен входит в рацион человека в количестве 55 – 110мг в год, а концентрация селена в крови составляет 0,09 – 0,29мкг/см3. При приёме внутрь селен концентрируется в печени и почках.

Йод Основной физиологической роль йода является участие в метаболизме щитовидной железы и присущих ей гормонах. Способность щитовидной железы аккумулировать йод присуща также слюнным и молочным железам. А также некоторым другим органам. В настоящее время, однако, считают, что ведущую роль йод играет только в жизни деятельности щитовидной железы. Недостаток йода приводит к возникновению характерных симптомов: слабости, пожелтению кожи, ощущение холода и сухости. Лечение тиреоидными гормонами или йодом устраняет эти симптомы. Недостаток тереоидных гормонов может привести к увеличению щитовидной железы. В редких случаях (отягощение в организме различных соединений, мешающих поглощению йода, например тиоцианата или антитиреоидного агента – гоитрина, имеющегося в различных видах капусты) образуется зоб. Недостаток йода особенно сильно отражается на здоровье детей – они отстают в физическом и умственном развитии. Йод дефицитная диета во время беремености приводит к рождению гипотироидных детей (кретинов).