«Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!» Проект ученицы 8 класса «В» Щедриной Александры.

Презентация:



Advertisements
Похожие презентации
Теорема Пифагора. Пифагор Самосский Открытия пифагорейцев Пифагорейцами было сделано много важных открытий в арифметике и геометрии, в том числе:теорема.
Advertisements

«Геометрия владеет двумя сокровищами: одно из них – это теорема Пифагора» Иоганн Кеплер.
Т ЕОРЕМА П ИФАГОРА Геометрическое доказательство (метод Гофмана) Геометрическое доказательство (метод Гофмана)
Теорема Пифагора и способы её докозательства. Содержание ТЕОРЕМА ПИФАГОРА ТЕОРЕМА ПИФАГОРА ТЕОРЕМА ПИФАГОРА ТЕОРЕМА ПИФАГОРА Геометрическое доказательство.
«Теорема Пифагора» Выполнила : Ученица 8 б класса Карташова Ирина. МОУ «Верхопенская средняя общеобразовательная школа им. М. Р. Абросимова»
П.53, выучить теорему Повторить теорию «Площади» обязательно 480 (а, в); дополнительно 481 (выборочная проверка собрать тетради в конце урока) Домашнее.
«Теорема Пифагора» Учитель математики I квалификационной категории Шатрова Т.М.
Пифагор. Теорема Пифагора. Работа Тымчук Анастасии. Ученицы 8 класса «А»
Теорема Пифагора
Геометрия владеет д д д двумя сокровищами: одно из них – это теорема Пифагора… Иоганн К Кеплер.
ТЕОРЕМА ПИФАГОРА "Геометрия обладает двумя великими сокровищами Первое-это теорема Пифагора..."
Теорема Пифагора Автор: Афанасьевская Н.И. - учитель математики СШ 14.
«Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!»
Сто доказательств (из истории теоремы Пифагора) Верховодов Влад, 9Б класс.
Подготовили ученицы 9 класса Вишневская Юлия, Костянко Вероника, Еремич Виктория Руководитель : Фещенко А. П. ГУО « Озеранский детский сад - средняя школа.
«Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!»
1.Найдите площадь квадрата со стороной 3 см; 1,2 мм; 5\7 м; см; а см. Ответы: 9 см 2 ; 1,44 см 2 ; 25\49 см 2 ; а 2 см Найдите площадь прямоугольного.
Руководитель проекта: Мешулина Л.Б., учитель математики МОУ «Андреевская средняя общеобразовательная школа» Судогодского района, Владимирской области.
Теорема Пифагора и способы её доказательства. Геометрия 8 класс Выполнила учитель математики МОУ «Средняя общеобразовательная школа 28» Маркова Ольга Геннадьевна.
«Пребудет вечной истина, Как скоро её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век». Шамиссо.
Транксрипт:

«Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!» Проект ученицы 8 класса «В» Щедриной Александры Руководитель: Макарова Т.П.

«Геометрия владеет двумя сокровищами: одно из них – это теорема Пифагора» Иоганн Кеплер

«Квадрат, построенный на гипотенузе прямо-угольного треугольника, равновелик сумме квадратов, построенных на катетах». «В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов». Во времена Пифагора формулировка теоремы звучала так: Современная формулировка теоремы Пифагора

Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдем: Катеты в квадрат возводим, Сумму степеней находим И таким простым путем К результату мы придем. И. Дырченко

О теореме Пифагора Пребудет вечной истина, как скоро Все познает слабый человек! И ныне теорема Пифагора Верна, как и в его далекий век. Обильно было жертвоприношенье Богам от Пифагора. Сто быков Он отдал на закланье и сожженье За света луч, пришедший с облаков. Поэтому всегда с тех самых пор, Чуть истина рождается на свет, Быки ревут, ее почуя, вслед. Они не в силах свету помешать, А могут лишь закрыв глаза дрожать От страха, что вселил в них Пифагор. A.Шамиссо

Теорема В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. a² + b² = c² a b c

О теореме Пифагора… Это одна из самых известных геометрических теорем древности, называемая теоремой Пифагора. Её и сейчас знают практически все, кто когда-либо изучал планиметрию. С глубокой древности находят все новые и новые доказательства теоремы Пифагора, все новые и новые замыслы ее доказательств. Таких доказательств -более или менее строгих, более или менее наглядных- известно более полутора сотен, но стремление к преумножению их числа сохранилось…

Построим треугольник ABC с прямым углом С. Построим BF=CB, BF CB Построим BE=AB, BE AB Построим AD=AC, AD AC Точки F, C, D принадлежат одной прямой. A B C D F E a b c

Как мы видим, четырёхугольники ADFB и ACBE равновелики, т.к. ABF=ЕCB. Треугольники ADF и ACE равновелики. Отнимем от обоих равновеликих четырёхугольников общий для них треугольник ABC, получим: Соответственно: а 2 + b 2 =с 2 A B C D F E a b c Что и требовалось доказать!

Память. Памятник Пифагору находится в порту города Пифагория и напоминает всем о теореме Пифагора, наиболее известном его открытии. Катет, лежащий в основании треугольника - мраморный, гипотенуза и фигура самого Пифагора в виде второго катета - медные.

В заключении еще раз хочется сказать о важности теоремы. Значение ее состоит прежде всего в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. К сожалению, невозможно здесь привести все или даже самые красивые доказательства теоремы, однако хочется надеется, что приведенные примеры убедительно свидетельствуют об огромном интересе сегодня, да и вчера, проявляемом по отношению к ней.

Литература Александров А.Д и др. Геометрия для 8-9 кл.: Учебное пособие для учащихся школ и классов с углублённым изучением математики. - М.: Просвещение,1991. – 415с. Атанасян Л.С. и др. Геометрия 7-9: Учебник для общеобразовательных учреждений. - М.: Просвещение, – 384с. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - М.: Прсвещение, – 287с. Никольская И.Л., Семёнов Е.Е. Учимся рассуждать и доказывать. - М.: Просвещение, – 192с. Энциклопедический словарь юного математика. – М.: Педагогика,1989. – 352с. Г.И. Гейзер «История математике в школе» М., Просвещение,1964 год «Математика» - газета 49, 2001 год, год, 45, 2001 год