в

Презентация:



Advertisements
Похожие презентации
в
Advertisements

Разгадайте ребус π Учитель математики МОУ Поназыревская СОШ Орлова Наталья Викторовна.
01.10 Углы, вписанные в окружность Г - 9. а b Углы Часть плоскости, ограниченная двумя лучами, выходящими из одной точки, называется углом. Прямой угол.
Презентация к уроку по геометрии (8 класс) на тему: Урок-презентация, Геометрия, 8 класс "Углы, вписанные в окружность"
Углы, вписанные в окружность. Угол разбивает плоскость на две части. Угол разбивает плоскость на две части. Каждая из частей называется плоским углом.
-закрепить понятия плоского угла, дополнительного плоского угла, центрального угла и угла, вписанного в окружность; -закрепить утверждение теоремы о градусной.
- познакомиться понятием плоского угла, дополнительного плоского угла, центрального угла и угла, вписанного в окружность; - доказать теорему о градусной.
Дуга окружности О АВ М N Дуга называется полуокружностью, если отрезок, соединяющий ее концы, является диаметром окружности. О А В d.
Выполнили: Шумихина, Ижболдина, Мельникова, Хачатрян, Касаткина.
Центральный угол – это угол с вершиной в центре окружности. Градусная мера дуги окружности – это градусная мера соответствующего центрального угла. Угол,
УГЛЫ, ВПИСАННЫЕ В ОКРУЖНОСТЬ ФРОЛОВА Е.А. преподаватель математики.
Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность имеют только одну общую точку. r H M O.
Вписанный угол. Определение. Угол, вершина которого лежит на окружности, а стороны пересекают её, называется вписанным. В А С АВС - вписанный А В С Е.
Г р а д у с н а я м е р а д у г и о к р у ж н о с т и. Ц е н т р а л ь н ы й у г о л.
Вписанный угол Теорема о вписанном угле. Цели урока: сформировать понятие вписанного угла, изучить теорему о вписанном угле; формирование навыков самостоятельной.
Угол между касательной и хордой, проходящей через точку касания Методическая разработка учителя Поляковой Е. А.
Выполнила: Хисяметдинова Екатерина Ученица МОУ «Рыновская СОШ»
Углы, связанные с окружностью Угол с вершиной в центре окружности называется центральным. Угол, вершина которого принадлежит окружности, а стороны пересекают.
Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность имеют только одну общую точку. r H M O.
-закрепить понятия плоского угла, дополнительного плоского угла, центрального угла и угла, вписанного в окружность, утверждение теоремы о градусной мере.
Транксрипт:

Разгадайте ребус π

Углы, вписанные в окружность Углы, вписанные в окружность

а b Плоский угол Это часть плоскости, ограниченная двумя лучами, выходящими из одной точки Прямой угол Тупой угол Развёрнутый угол Острый угол α α

Центральный угол Это угол с вершиной в центре окружности А В О Часть окружности, заключенная внутри плоского угла, называется дугой окружности, соответствующей углу Градусная мера дуги АВ равна градусной мере

Вписанный угол Это угол, вершина которого лежит на окружности, а стороны пересекают эту окружность А В С < ВАС вписан в окружность, он опирается на хорду ВС Центральный угол, опирающийся на туже дугу, что и вписанный, называется соответствующим центральным углом

На чертеже укажите вписанные и соответствующие им центральные углы А В О К С а)б) в)в) М N P D C R F K S L

Свойство вписанного угла (теорема 11.5) Угол, вписанный в окружность, равен половине соответствующего центрального угла Дано:

1 случай: А В С О Треугольник АОВ равнобедренный (АО=ВО=R)

1)Найдите, чему равен

Найдите градусную меру угла АВС А В D CO ) Углы АВС и ADC вписаны в окружность и опираются на общую дугу АС По следствию из теоремы

Найдите градусную меру угла АВС A B C O )

Найдите градусную меру угла АВС C A B D O )

Найдите градусную меру угла АВС A B C O ) < AOC дополнительный < АОС = =300 0 < АВС вписанный, дополнительный < АОС соответствующий центральный < АВС = ½< АОС= ½· =150 0