Кривые второго порядка Выполнила: студентка группы 2У31 Полымская Дарья
Кривые второго порядка Общее уравнение кривой второго порядка Общее уравнение кривой второго порядка Окружность Окружность Эллипс Эллипс Гипербола Гипербола Парабола Парабола
Общее уравнение кривой второго порядка К кривым второго порядка относятся: эллипс, частным случаем которого является окружность, гипербола и парабола. Они задаются уравнением второй степени относительно x и y: Общее уравнение кривой второго порядка В некоторых частных случаях это уравнение может определять также две прямые, точку или мнимое геометрическое место.
Преобразование общего уравнения к каноническому виду рассмотрим на примере:
Преобразование общего уравнения к каноническому виду на примере: y 0 х y x Перенесем начало координат в точку (1; -1), получим новую систему координат:
Окружность Окружностью называется геометрическое место точек на плоскости, равноудаленных от точки А(a; b) на расстояние R. y 0 х А R М(x; y) Для любой точки М справедливо: Каноническое уравнение окружности
Эллипс Эллипсом называется геометрическое место точек, сумма расстояний от каждой из которых до двух точек той же плоскости F1 и F2, называемых фокусами, есть величина постоянная, равная 2а. Зададим систему координат и начало координат выберем в середине отрезка [F1 F2] y 0 х F1 -c r1 r2 F2 c M(x; y)
Каноническое уравнение эллипса
Эллипс y 0 х F1F1 F2F2 -c c M(x; y) r1r1 r2r2 а -а большая полуось малая полуось b -b фокальное расстояние фокальные радиусы точки М эксцентриситет эллипса Для эллипса справедливы следующие неравенства: Эксцентриситет характеризует форму эллипса (ε = 0 – окружность)
Пример Составить уравнение эллипса, фокусы которого лежат в точках F 1 (-4; 0) F 2 (4; 0), а эксцентриситет равен 0,8. Каноническое уравнение эллипса: y 0 х
Гипербола Гиперболой называется геометрическое место точек, разность расстояний от каждой из которых до двух точек той же плоскости F 1 и F 2, называемых фокусами, есть величина постоянная, равная 2а. y 0 х F1F1 F2F2 -c c M(x; y) r1r1 r2r2
Каноническое уравнение гиперболы
Гипербола y 0 х F1F1 F2F2 -c c M(x; y) а -а-а -b b Для гиперболы справедливо: r1r1 r2r2 фокальные радиусы точки М действительная полуось мнимая полуось эксцентриситет гиперболы асимптоты гиперболы
Пример Составить уравнение гиперболы, проходящей через точку А(6; -4), если ее асимптоты заданы уравнениями: Решим систему: Точка А лежит на гиперболе
Пример Каноническое уравнение гиперболы: 0 y х
Парабола y 0 х F M(x; y) d r Параболой называется геометрическое место точек на плоскости, для каждой из которых расстояние до некоторой фиксированной точки той же плоскости, называемой фокусом, равно расстоянию до прямой:
Парабола y 0 х F M(x; y) d r каноническое уравнение параболы директриса параболы фокус параболы фокальный радиус Эксцентриситет параболы:
Спасибо за внимание!