С в о й с т в а к о р н е й к в а д р а т н о г о у р а в н е н и я.

Презентация:



Advertisements
Похожие презентации
Решение квадратных уравнений Выполнила: Смирнова Анастасия, ученица 8 класса Руководитель: Воронова Е.В., учитель математики МОУ Судиславская средняя общеобразовательная.
Advertisements

GE131_350A
Франсуа Виет ( ) Именно этим французским математиком впервые были введены буквенные обозначения. До этого пользовались громоздкими словесными.
Теорема Виета. Биография Франсуа Виет ( ) французский математик. Разработал почти всю элементарную алгебру. Известны «формулы Виета», дающие зависимость.
Франсуа Виет( )- "отец буквенной алгебры". Родился Франсуа в Фонтене - ле Конт (Франция). По профессии юрист. Заинтересовавшись астрономией,
Квадратные уравнения Определение. Неполные кв. уравнения. Полное кв. уравнение. Теорема Виета. Теорема, обратная теореме Виета. Решение кв. уравнений с.
1. Сформулируйте определение квадратного уравнения; 2. Назовите виды квадратных уравнений; 3. Расскажите алгоритм решения квадратного уравнения по формуле.
Выполнила: Гаврилова И.П., учитель математики МОУ «С(К)ОШИ 3 Магнитогорск, 2007 ТЕОРЕМА ВИЕТА.
Франсуа Виет ( ) Именно этим французским математиком впервые были введены буквенные обозначения. До этого пользовались громоздкими словесными.
Уравнения Определения Равенство с переменной g(x) = f(x) называется уравнением с одной переменной х. Всякое значение переменной, при котором f(x) и g(x)
ВИЕТ Франсуа ( ), французский математик. Разработал почти всю элементар- ную алгебру. Известны «формулы Виета», дающие зависимость между корнями.
Тема урока: «Приведённое квадратное уравнение. Теорема Виета.» Учитель математики ГОУ СОШ 250: Самсонова Мария Николаевна Размещено на.
Никогда не считай, что ты знаешь все, что тебе уже больше нечему учиться. Н. Д. Зеленский.
Электронный учебник Квадратные уравнения 8 класс Огаджанян Н.А.
Теорема Виета. Автор: учитель математики Петрова С.В.
Способы решения квадратных уравнений Решить уравнение – значит найти такое значение переменной, которое обращает уравнение в верное равенство. Это значение.
Квадратный трёхчлен Квадратный трёхчлен Квадратные уравнения Определение квадратного трёхчлена Корни квадратного трёхчлена.
Урок алгебры в 8 классе. Цели урока: - повторить виды квадратных уравнений и формулы корней квадратного уравнения; - «открыть» зависимость между корнями.
Квадратные уравнения ax2+bx+c=0. Уравнение вида ax 2 +bx+c=0 называется квадратным уравнением, где a 0. Число a – старший коэффициент уравнения Число.
Теорема Виета Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие.
Транксрипт:

С в о й с т в а к о р н е й к в а д р а т н о г о у р а в н е н и я

Теорема Виета Теорема Виета Выражения, симметрические относительно корней квадратного уравнения Выражения, симметрические относительно корней квадратного уравнения Разложение квадратного трехчлена на множители Разложение квадратного трехчлена на множители Exit

Приведённые квадратные уравнения Приведённые квадратные уравнения Теорема Виета Теорема Виета Теорема обратная теореме Виета Теорема обратная теореме Виета Франсуа Виет( ) Франсуа Виет( )

Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно равно свободному члену. Доказательство

Особого внимания заслуживают квадратные уравнения в которых первый коэффициент равен единице. Такие уравнения называются приведёнными. Если в приведенном квадратном уравнении обозначить второй коэффициент буквой p, а свободный член буквой q, то уравнение будет иметь вид

Рассмотрим приведённое квадратное уравнение x 2 +px+q=0 Если дискриминант этого уравнения больше нуля, то уравнение имеет два корня: Далее

Найдём сумму корней: Сумма корней –p, т.е. второму коэффициенту, взятому с противоположным знаком: x 1 +x 2 =-p Найдём прозведение корней: Произведение корней равно q, т.е. свободному члену: x 1 x 2 =p Далее

Если дискриминант квадратного уравнения равен нулю, то уравнение имеет один корень. Его можно найти по формуле корней В дальнейшем в некоторых случаях целесообразно считать, что такое уравнение имеет не один, а два разных корня: и Тогда и в этом случае теорема Виета останется верной. Сложив x 1 и x 2, получим-p: Далее

Перемножив x 1 и x 2, получим P 2 /4. Но так как D=p 2 -4q=0, то P 2 =4q, а поэтому: Теорема доказана.

Франсуа Виет ( ), французский математик, по профессии юрист; ввел бук­ венные обозначения не только для неизвестных величин, но и для коэффициентов уравнения «(Введение в аналитическое искусство», 1591). Ему принадлежит установление единообразного приема решения уравнений 2, 3 и 4-й степеней. Виет получил существенные результаты в тригонометрии, астрономии, криптографии; с появлением его работ в научных кругах Европы стали использоваться десятичные дроби. Среди своих открытий Виет особенно высоко ценил установленную им зависимость между корнями и коэффициентами уравнений.

Для приведенного квадратного уравнения справедлива тео рема, обратная теореме Виета: если числа т и п таковы, что их сумма равна -р, а произведение равно q, то эти числа являются корнями уравнения х 2 + рх + q = О. Доказательство

Пусть х 2 + рх + q = о – приведенное квадратное уравнение, а числа m и n такие, что m+n=-p и mn=q. Подставив в это уравнение вместо p равное ему число –(m+n), вместо q равное ему число mn, получим равносильное ему уравнение: x 2 -(m+n)x+mn=0 Преобразуем левую часть уравнения: x 2 -mx-nx+mn=0; x(x-m)-n(x-m)=0; (x-m)(x-n)=0.

Отсюда получаем: x-m=0 или x-n=0, x 1 =m, x 2 =n. Значит, числа m и n являются корнями уравнения: x 2 +px+q=0. ---Для не приведенного квадратного уравнения ax 2 +bx+c=0 теорема, обратная теореме Виета, формулируется так: -если числа m и n таковы, что и, то эти числа являются корнями уравнения ax 2 +bx+c=0.

Выражение с двумя переменными называется симметрическим относительно этих переменных, если при перестановки этих переменных получается тождественно равное ему выражение. Пример

Рассмотрим выражения с двумя переменными: а b и b а, Если в каждом из них переставим переменные, т.е. всюду вместо а поставим b и вместо и вместо b поставим а, то получим тождественно равные им выражения:

1) Определение Определение 2) Теорема Теорема 3) Доказательство Доказательство

Корнем квадратного трёхчлена называется значение переменной, при котором значение квадратного трехчлена равно нулю. х = 2 При х = 2 квадратный трехчлен 3x 2 -7x+2 обращается в нуль.

Если x 1 и x 2 – корни квадратного трехчлена ax 2 + bx + c, то ax 2 + bx + c = a(x - x 1 )(x - x 2 ). Доказательство

Корни x 1 и x 2 квадратного трехчлена ax 2 +bx+c являются корнями квадратного уравнения ax 2 +bx+c=0. Применяя теорему Виета, получим: Отсюда

Подставим получившиеся выражения вместо b и c в квадратный трехчлен и выполним преобразования: Значит Доказанная теорема позволяет, найдя корни квадратного трехчлена, записать его в виде произведения первого коэффициента, разности переменной и одного корня и разности переменной и другого коня. Теорема доказана