Комплексные числа. Основные понятия Комплексным числом z называют выражение: где а и b – действительные числа, i – мнимая единица, определяемая равенством:

Презентация:



Advertisements
Похожие презентации
Комплексные числа
Advertisements

Комплексные числа. Кафедра Алгебры, Геометрии и Анализа. ДВФУ.
К о м п л е к с н ы е ч и с л а. Вычислите: Мнимая единица Мнимая единица i – начальная буква французского слова imaginaire – «мнимый»
Комплексные числа и арифметические операции над ними.
КОМПЛЕКСНЫЕ ЧИСЛА. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Определение. Комплексным числом z называется выражение, где a и b – действительные числа, Определение. Комплексным.
Комплексные числа МАОУ «Гимназия 1» Пермь, 2014 Медведева Людмила Петровна, учитель математики.
Комплексные числа. Комплексным числом называется число вида где x и y – вещественные числа.
После изучения темы «Комплексные числа учащиеся должны: Знать: алгебраическую, геометрическую и тригонометрическую формы комплексного числа. Уметь: производить.
Государственное Образовательное Учреждение Лицей 1523 ЮАО г.Москва Лекции по алгебре и началам анализа 10 класс © Хомутова Лариса Юрьевна.
Доклад по теме:Комплексные числа и действия над ними ВЫПОЛНИЛ СТУДЕНТ ГРУППЫ 2Г31 МИШАНЬКИН А.Ю.
Геометрия комплексных чисел. Подготовили: Двалашвили Т. Беззубова А. Абатуров О. Аседулов Т. Гатиятов И.
Практическая работа «Действия с комплексными числами»
Мнимая единица комплексное число, квадрат которого равен отрицательной единице. В математике, физике мнимая единица обозначается как латинская i. Она.
Тема: КОМПЛЕКСНЫЕ ЧИСЛА МБОУ лицей 1 г. Комсомольск-на-Амуре Чупрова О.С.
Деление – это действие, обратное сложению вычитанию умножению.
Множество комплексных чисел.. Комплексным числом называется выражение вида а + bi, в котором а и b – действительные числа, а i – некоторый символ такой,
1 Как найти неизвестное слагаемое? 2 Что получается в результате умножения?
ДЕЙСТВИЯ НАД МНОГОЧЛЕНАМИ Работу выполнила Попова Вера Николаевна, учитель математики МОУ «ПСОШ» 2.
Тригонометрическая форма записи комплексного числа. -новая форма представления комплексного числа; -свойства модуля комплексного числа; Учитель математики.
Комплексные числа МБОУ СОШ 99 г.о.Самара Класс: 10 Учебник: Алгебра и начало анализа. А. Г. Мордкович, П. В. Семенов (профильный уровень) (профильный уровень)
Транксрипт:

Комплексные числа

Основные понятия Комплексным числом z называют выражение: где а и b – действительные числа, i – мнимая единица, определяемая равенством: а называется действительной частью числа z, b – мнимой частью. Их обозначают так: Если а = 0, то число b i называется чисто мнимым. Если b = 0, то получается действительное число а. Два комплексных числа, отличающиеся только знаком мнимой части, называются сопряженными:

Геометрическое изображение комплексных чисел Всякое комплексное число можно изобразить на плоскости XOY в виде точки A(a; b). Плоскость, на которой изображаются комплексные числа, называют плоскостью комплексной переменной. y 0 х A(a; b) z a b Точкам, лежащим на оси OX, соответствуют действительные числа ( b = 0 ), поэтому ось OX называют действительной осью. Точкам, лежащим на оси OY, соответствуют чисто мнимые числа ( a = 0 ), поэтому ось OY называют мнимой осью. Иногда удобно считать геометрическим изображением комплексного числа z вектор

Тригонометрическая форма записи комплексных чисел Тогда имеют место равенства: Следовательно, комплексное число z можно представить в виде: y 0 х A(a; b) z a b Обозначим через r модуль вектора, через φ угол между вектором и положительным направлением оси OX. φ Тригонометрическая форма записи комплексного числа Модуль комплексного числа Аргумент комплексного числа Аргумент комплексного числа z считается положительным, если он отсчитывается от положительного направления оси OX против часовой стрелки. Очевидно, что φ определяется не однозначно, а с точностью до слагаемого r

Действия над комплексными числами Равенство комплексных чисел. 1 Два комплексных числа и называются равными :, если Комплексное число равно нулю, тогда и только тогда, когда 2 Сложение и вычитание комплексных чисел. Суммой (разностью) комплексных чисел и называется комплексное число, определяемое равенством:

Действия над комплексными числами 3 Умножение комплексных чисел. Сложение и вычитание комплексных чисел, изображенных векторами производится по правилу сложения или вычитания векторов: y 0 х z z1z1 z2z2 z 1 + z 2 z 1 - z 2 Умножением комплексных чисел и называется число, получаемое при умножении этих чисел по правилам алгебры как двучлены, учитывая что

Действия над комплексными числами Произведение сопряженных комплексных чисел:

Действия над комплексными числами 4 Деление комплексных чисел. Чтобы разделить на необходимо умножить делимое и делитель на число, сопряженное делителю:

Действия над комплексными числами Найти произведение и частное комплексных чисел: = -1