Как обеспечить жизнь в космическом полёте?
Почему об этом стоит задуматься? Успешные полеты космонавтов вокруг Земли на космических кораблях и орбитальных станциях, запуски автоматических межпланетных станций к Луне, Венере и Марсу делают вполне реальными в будущем полеты человека к другим планетам. Чтобы осуществить в будущем такие полеты, которые будут длиться многие месяцы и, возможно, годы, необходимо решить очень сложные инженерно-технические и медико- биологические проблемы.
Проблема жизнеобеспечения. При нормальном функционировании организма человеку необходимо в сутки около 1000 г кислорода, 2200 г воды (для питья), около 500 г сухой пищи и примерно 1800 г воды для санитарных нужд - все вместе это составляет около 5,5 кг. Это значит, что годовой запас этих веществ для одного космонавта составит около 2 т! Вес системы жизнеобеспечения, основанной на запасах, растет пропорционально увеличению числа членов экипажа и длительности полета.
Выход есть! Ученые пришли к выводу, что такую систему можно создать, если на борту корабля и на планетных станциях разместить и рационально скомпоновать сообщества различных организмов, которые обеспечивали бы полный биологический круговорот веществ, подобный тому, который существует на Земле.
Космическая экосистема. Схема замкнутого экологического комплекса: 1 человек; 2 животные; 3 высшие растения; 4 одноклеточные водоросли; 5 кислород; 6 вода; 7пища; 8 отходы; 9 минерализация отходов; 10 минеральные соли; 11 питательная среда; 12 углекислый газ; 13 солнечный свет.
Круговорот веществ С02 + отходы жизнедеятельности Растения + энергия света О2+питательные вещества Человек
Как этоработает Как это работает? Человек, поглощая кислород, будет выдыхать углекислый газ, растения же, поглощая его, а также усваивая воду и минеральные соли, будут вновь и вновь создавать пищевые вещества и выделять кислород. Движущей силой этого процесса явится световая энергия. Твердые и жидкие отходы жизнедеятельности человека (после их минерализации) будут использоваться в качестве минерального питания растений и для получения чистой воды. Таким образом, замкнутый экологический комплекс позволит непрерывно циклически воспроизводить на борту космического корабля все необходимые для жизни человека условия.
Космическая целина?! Это не значит, конечно, что на борту космических кораблей появятся привычные для нашего глаза посевы сельскохозяйственных растений. Здесь будут созданы такие инженерно- биологические системы, в которых культивированием растений займутся, по- видимому, автоматы.
Водоросли - кушай, никого не слушай! Какие же растения будут выращиваться в космосе? Особенный интерес представляют одноклеточные зеленые водоросли, например хлорелла. Она имеет микроскопические размеры, очень быстро размножается и отличается высокой активностью фотосинтеза. Эта водоросль может культивироваться в питательных средах, поглощая за короткий срок большое количество углекислого газа, выделяя кислород и накапливая значительные количества биомассы.
Возможно завтраки будут выглядеть именно так
Успехи разработчиков. Успехи, достигнутые на пути интенсификации роста и биосинтеза микроскопических водорослей, позволяют уже сейчас обеспечить с помощью кг суспензии водорослей воспроизводство воздуха и пищи на одного человека. Найдены и пути управления качественной стороной фотобиосинтеза водорослей. Можно получать от них биомассу, которая по соотношению белков, жиров и углеводов практически полностью копирует соотношение этих веществ в пищевом рационе человека.
Водорослями сыт не будешь. Это не значит, конечно, что в составе замкнутого экологического комплекса будут только одноклеточные водоросли. В него, безусловно, должны быть включены привычные для человека высшие растения, а также животные и некоторые микроорганизмы.
Что учитывать? Работа по созданию замкнутого экологического комплекса связана с большими трудностями, так как все звенья такого биологического сообщества должны быть в высшей степени строго согласованы друг с другом, в определенной зависимости соподчинены и взаимно обеспечивать друг друга веществами и энергией. Должны быть учтены воздействия космической радиации на различные организмы, действие перегрузок, невесомости и всех тех факторов, с которыми неизбежно столкнется живой организм в специфических условиях космического полета.
Think about future
СПАСИБО ЗА ВНИМАНИЕ!