Поговорим о многогранниках Выполнила Малашина Ольга Владимировна, учитель математики МОУ СОШ с. Липовка.

Презентация:



Advertisements
Похожие презентации
Закирянова Зульфия Назиповна, МВ(С)ОШ 3, г.Нижневартовск.
Advertisements

Выполнила Абрамова Виктория Александровна Определение Тетраэдр Куб Октаэдр Додекаэдр Икосаэдр Таблица Историческая справка Это интересно.
Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству,
Многогранники вокруг нас Математика владеет не только истиной, но и высшей красотой - отточенной и строгой, возвышенно чистой и стремящейся к подлинному.
Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер.
Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству,
Многогранни ки вокруг нас Самохвалова Т.М Математика владеет не только истиной, но и высшей красотой - отточенной и строгой, возвышенно чистой и стремящейся.
Многогранники вокруг нас Подготовила учитель математики и информатики Полищук И.В.
«Правильные многогранники» Работа учениц 10 класса «Б» Латышевой Насти Бычковой Сони.
Правильные многогранники Содержание Понятие Разновидности правильных многогранников Немного истории Немного истории Об авторе.
Правильные Многогранники. Работа Пушкиной Марии и Широкова Ивана.
С глубокой древности человеку известны пять удивительных многогранников.
Учитель математики Шурупова С.В, Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся.
Правильные многогранники. Выпуклый многогранник называется правильным, если его грани являются правильные многоугольники и в каждой вершине сходится одинаковое.
Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству,
Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число.
Многогранники вокруг нас Выполнили: ученицы 11«а» класса МОУ СОШ 4 «Центр образования» Кудрявцева А. Фоминых А г.
Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Но теория многогранников является и современным разделом.
Работу выполнил ученик 11 класса Джалмурзинов Аслан.
Цель: ознакомить учащихся с геометрическим телом на примере прямоугольного параллелепипеда; учить решать задачи на нахождение площади поверхности прямоугольного.
Транксрипт:

Поговорим о многогранниках Выполнила Малашина Ольга Владимировна, учитель математики МОУ СОШ с. Липовка

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. "Правильных многогранников вызывающе мало, -написал когда-то Л.Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

Правильные многогранники Еще в древней Греции были известны пять Еще в древней Греции были известны пять удивительных многогранников. удивительных многогранников.

Их изучали ученые, ювелиры, священники, архитекторы. Этим многогранникам даже приписывали магические свойства. Древнегреческий ученый и философ Платон (IV–V в до н. э.) считал, что эти тела олицетворяют сущность природы. В своем диалоге «Тимей» Платон говорит, что атом огня имеет вид тетраэдра, земли – гексаэдра (куба), воздуха – октаэдра, воды – икосаэдра. В этом соответствии не нашлось места только додекаэдру и Платон предположил существование еще одной, пятой сущности – эфира, атомы которого как раз и имеют форму додекаэдра. Ученики Платона продолжили его дело в изучении перечисленных тел. Поэтому эти многогранники называют платоновыми телами Платон (IV–V в до н. э.) Платон (IV–V в до н. э.)

Правильные многогранники

Тетраэдр Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра. Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра. Очевидно, что тетраэдр с заданной длиной ребра единственен. Все остальные тетраэдры подобны ему и определяются длиной ребра / Очевидно, что тетраэдр с заданной длиной ребра единственен. Все остальные тетраэдры подобны ему и определяются длиной ребра /

Гексаэдр Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра. Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра.

Октаэдр Октаэдр (okto – восемь). Октаэдр (okto – восемь). Это правильный многогранник, Это правильный многогранник, все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани

Додекаэдр Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать). Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать).

Икосаэдр Существует правильный многогранник, у которого все грани – правильные треугольники, и из каждой вершины выходит 5 ребер. Этот многогранник имеет 20 граней, 30 ребер, 12 вершин и называется икосаэдром (icosi – двадцать). Существует правильный многогранник, у которого все грани – правильные треугольники, и из каждой вершины выходит 5 ребер. Этот многогранник имеет 20 граней, 30 ребер, 12 вершин и называется икосаэдром (icosi – двадцать).

Полуправильные многогранники

Определение: Полуправильным называется выпуклый многогранник, гранями которого являются правильные многоугольники (возможно с разным числом сторон), причем в каждой вершине сходится одинаковое число граней. Полуправильным называется выпуклый многогранник, гранями которого являются правильные многоугольники (возможно с разным числом сторон), причем в каждой вершине сходится одинаковое число граней.

Тела Архимеда

Правильная шестиугольная призма Шестиугольная антипризма

Усеченный тетраэдр Усеченный икосаэдр Икосододекаэдр Усеченный икосододекаэдр

кубооктаэдр усеченный куб плосконосый куб ромбокубооктаэдр

Кубооктаэдр Этот полуправильный многогранник получается, если провести в кубе отсекающие плоскости через середины ребер, выходящих из одной вершины. Его гранями являются шесть квадратов, как у куба, и восемь правильных треугольников, как у октаэдра. Отсюда и его название.

Усеченный куб Если указанным способом срезать вершины куба, то получится полуправильный многогранник, который и называется усеченным кубом

ромбоикосододекаэдр плосконосый додекаэдр

Звездчатые многогранники

Тела Кеплера- Пуансо Кроме правильных и полуправильных многогранников красивые формы имеют так называемые звездчатые многогранники. Кроме правильных и полуправильных многогранников красивые формы имеют так называемые звездчатые многогранники. Правильных звездчатых многогранников всего четыре. Первые два открыты И. Кеплером, а два других почти 200 лет спустя построил Л. Пуансо. Правильных звездчатых многогранников всего четыре. Первые два открыты И. Кеплером, а два других почти 200 лет спустя построил Л. Пуансо.

Малый звездчатый додекаэдр Большой звездчатый додекаэдр

Примечание: Из тетраэдра, куба и октаэдра звездчатые многогранники не получаются. Из додекаэдра получается три. Икосаэдр имеет одну звездчатую форму – большой икосаэдр.

Это интересно Звездчатые многогранники очень декоративны, что позволяет широко применять их при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки – это звездчатые многогранники.

Математика владеет не только истиной, но и высшей красотой- красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства. Бертран Рассел