Тема урока Приложения определенного интеграла к решению физических задач.

Презентация:



Advertisements
Похожие презентации
МАТЮХИНА ИРИНА АЛЕКСАНДРОВНА УЧИТЕЛЬ МАТЕМАТИКИ МБОУ СОШ 29 С УГЛУБЛЕННЫМ ИЗУЧЕНИЕМ ОТДЕЛЬНЫХ ПРЕДМЕТОВ Г.СТАВРОПОЛЯ
Advertisements

Определенный интеграл Липлянская Татьяна Геннадьевна, учитель математики МОУ «СОШ 3» города Ясного Оренбургской области.
Алгебра 11 класс Липлянская Татьяна Геннадьевна, учитель математики МОУ «СОШ 3» города Ясного Оренбургской области.
Интеграл и первообразная. Содержание 1. Первообразная 1.1. Определение первообразной 1.2. Основное свойство первообразной 1.3. Три правила нахождения первообразной 1.6. Таблица.
Лектор Янущик О.В г. Математический анализ Раздел: Определенный интеграл Тема: Определенный интеграл и его свойства. Формула Ньютона - Лейбница.
И его применение. Определение Пусть на отрезке [а;b] оси Ох задана непрерывная функция f(x), не имеющая на нем знака. Фигуру, ограниченную графиком этой.
Решим задачу о вычислении площади фигуры, ограниченной графиком функции, отрезками прямых, и осью Ox.Такую фигуру называют криволинейной трапецией a b.
Определенный интеграл Prezentacii.com. Задача о вычислении площади плоской фигуры Решим задачу о вычислении площади фигуры, ограниченной графиком функции,
Тема урока: «Применение интеграла к решению физических задач» Учитель математики ВКК МБОУ СОШ с углубленным изучением отдельных предметов Орлова О.В. г.
Определенный интеграл Опр. Под определенным интегралом от данной непрерывной функции на отрезке соответствующее приращение ее первообразной. понимается.
ПРИМЕНЕНИЕ ИНТЕГРАЛОВ ДЛЯ РЕШЕНИЯ ФИЗИЧЕСКИХ ЗАДАЧ.
Неопределённый интеграл.. «Неберущиеся» интегралы «Неберущимся» называется интеграл, который не выражается через элементарные функции, т.е. его нельзя.
Единство в многообразии Урок повторения и обобщения знаний по теме «Применение интеграла» Учитель математики Андреева Зинаида Маркеловна МБОУ СОШ 41 с.Аксаково.
Пермский региональный институт педагогических информационных технологий Столповская Надежда Константиновна учитель математики М О У Ключевская средняя.
Учитель математики МКОУ СОШ5 Цуканова Зоя Ивановна.
Северо-Западный Административный Округ, Школа69 им. Б.Ш.Окуджавы. Учитель математики Мищенко О. В Москва, г.
План: 1.Понятие первообразной функции. Неопределенный интеграл. 2.Методы интегрирования (по формулам, заменой переменной, по частям). 3.Понятие определенного.
Применение интеграла при решении физических задач Выполнили: учитель физики Носенко Л.В. учитель математики Усенко С.Д. сош 35 г.Николаева 2012 г
Презентация к уроку по теме: Презентация к уроку "Вычисление объёмов тел вращения. Применение Интеграла"
Определённый интеграл.. Геометрические приложения определённого интеграла. Вычисление площадей плоских фигур. x y 0ab y = f(x) S x y 0 ab S.
Транксрипт:

Тема урока Приложения определенного интеграла к решению физических задач

Цель урока Познакомиться с историей развития интегрального и дифференциального исчисления Научиться применять интеграл для решения физических задач

Вычисление площади криволинейной трапеции На отрезке функция

Вычисление объемов тел с помощью определенного интеграла.

Вычисление пути Перемещение точки, движущейся по прямой со скоростью v = v (t), за промежуток времени, вычисляется по формуле

Вычисление массы неоднородного стержня и координаты центра масс а) суммарная масса М стержня равна в) координата центра масс равна

Интеграл

БЕРНУЛЛИ Якоб Слово интеграл Внес существенный вклад в разработку основ дифференциального и интегрального исчислений, аналитической геометрии, теории вероятностей и вариационного исчисления. Решил проблему Лейбница об изохронной кривой, исследовал логарифмическую спираль, ввел полярные координаты.

БЕРНУЛЛИ Иоганн В 1697 опубликовал работу по экспоненциальному исчислению, в которой впервые сформулировал задачу о брахистохроне; Ряд открытий в области интегрального и дифференциального исчислений.

ЛЕЙБНИЦ Готфрид Фридрих Наряду с Ньютоном и независимо от него, создал дифференциальное и интегральное исчисления. Ввёл применяемое и сегодня обозначение производной df/dx. Ввёл бинарную систему счисления с цифрами 0 и 1, на котором базируется современная компьютерная техника.

Доказал теорему о числе действительных корней алгебраического уравнения, лежащих между данными пределами Нашел формулу представления функции с помощью интеграла, играющую важную роль в современной математике. Доказал, что всякую произвольно начерченную линию, составленную из отрезков дуг разных кривых, можно представить единым аналитическим выражением. Фурье

КЕПЛЕР Иоганн В своих сочинениях «Новая астрономия» и «Стереометрия винных бочек» правильно вычислил ряд площадей и объемов.

Барроу Исаак Оставил способы изучения криволинейных фигур и метод касательных, в чём многие видели предвестника дифференциальног о исчисления.

НЬЮТОН Исаак Одновременно с Г. Лейбницем, но независимо от него, создал дифференциальное и интегральное исчисления. Вместе с Г. В. Лейбницем считается основоположником дифференциальног о исчисления.

БУНЯКОВСКИЙ Виктор Сделал перевод сочинений Коши о дифференциальном и интегральном исчислениях, причём присоединил к этому переводу свои примечания, а также составил, по поручению министерства народного просвещения, несколько учебных руководств по разным отраслям математики.

ОСТРОГРАДСКИЙ Михаил Метод выделения рациональной части неопределенного интеграла от рациональной дроби

ЧЕБЫШЕВ Пафнутий Львович По интегральному исчислению особенно замечателен мемуар 1860 г.: «Sur l'intégration de la différentielle», в котором даётся способ узнать при помощи конечного числа действий, в случае рациональных коэффициентов подкоренного полинома, возможно ли определить число А так, чтобы данное выражение интегрировалось в логарифмах и, в случае возможности, найти интеграл.

РИМАН Бердхард Предложил исследовать внутреннюю геометрию пространств, тем самым заложил основы дифференциальной геометрии и подготовив фундамент для общей теории относительности Рассмотрел формализацию понятия интеграла и ввёл своё определение интеграл Римана.

Вычисление площади криволинейной трапеции На отрезке функция

Вычисление объемов тел с помощью определенного интеграла.

Вычисление пути Перемещение точки, движущейся по прямой со скоростью v = v (t), за промежуток времени, вычисляется по формуле

Вычисление массы неоднородного стержня и координаты центра масс а) суммарная масса М стержня равна в) координата центра масс равна

Работа переменной силы Пусть точка движется по оси Ох под действием силы, проекция которой на ось Ох есть функция f от x. При этом мы будем предполагать, что f есть непрерывная функция. Под действием этой силы материальная точка переместилась из точки М(a) в точку М(b). Покажем, что в этом случае работа А подсчитывается по формуле a b 0 M(a)M(b) x

Работа переменной силы 0 M(a)M(b) x Разобьём отрезок [a;b] на n отрезков одинаковой длины Т. к. f (x) – непрерывная функция от х, при достаточно малом отрезке [a;b] работа силы на этом отрезке приближенно равна f(a)( -a). Т. О. работа силы на n-м отрезке приближенно равна f( )(b - ).

Работа переменной силы Значит, работа силы на всем отрезке Приближенное равенство переходит в точное, если считать, что n

Этапы работы над задачей Исследовать физическую ситуацию Перевести содержание задачи на язык функций Применить математические методы для решения задачи Проанализировать полученный результат

Задача 1 Нефть, подаваемая в цилиндрический бак через отверстие в дне, заполняет весь бак. Определите затраченную при этом работу. Высота бака – h, а радиус основания R.

Задача 2 Канал имеет в разрезе форму равнобедренной трапеции высотой h с основаниями a и b. Найдите силу, с которой вода, заполняющая канал, давит на плотину.

Задача 3 Вычислите работу, которую необходимо совершить, чтобы поднять тело массой m с поверхности Земли на высоту h

Слово интеграл от латинского integer – целый. Интеграция – восстановление, восполнение, воссоединение. Интегрирование – процесс объединения отдельных частей в целое.

Задача. Пружина жёсткостью K=1000 Н/м растянута на 6 см. Какую работу надо совершить, чтобы растянуть эту пружину дополнительно еще на 8 см? Первый способ решения Пусть х 1 – начальное удлинение пружины, тогда х 2 – удлинение ее после дополнительного растяжения, тогда х 2 =х 1 + Δ х и изменение длины пружины Δ х= х 2 - х 1. Учитывая закон Гука: F упр =k х, и то, что сила упругости при деформации пружины изменяется, вычисляем работу А=F сред · Δ х=F сред (x 2 - x 1 ) =(F 1 +F 2 )· ·(x 2 - x 1 ) /2 =(kx 1 + kx 2 )(x 2 - x 1 )/2= kx 2 2 /2 - kx 1 2 /2 = k(x 1 +Δх) 2 /2 - kx 1 2 /2 =8Дж