Логика - наука, изучающая законы и формы мышления. В логике мышление рассматривается как инструмент познания окружающего мира.

Презентация:



Advertisements
Похожие презентации
Алгебра логики (булева алгебра) - это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности)
Advertisements

Логика – это наука формах и способах мышления. Это учение о способах рассуждений и доказательств. Понятие – это форма мышления, которая выделяет существенные.
Алгебра логики. Алгебра логики это математический аппарат, с помощью которого записывают, вычисляют, упрощают и преобразовывают логические высказывания.
Логические основы компьютеров. Что такое алгебра логики и логические высказывания? Алгебра логики это раздел математики, изучающий высказывания, рассматриваемые.
Алгебра логики. Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности)
Что такое алгебра логики?. Алгебра логики это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических Значений (истинности.
Морозова Инна Валентиновна Учитель информатики и технологии МБОУ»СОШ 3 им. Г.В.Зимина» г. Калуги.
Презентация ориентирована на использование интерактивной доски в ходе урока Презентацию разработала Воеводина Н.Д.
Логические основы компьютеров Презентацию подготовил Картунен А.А. © Картунен А.А., препо- даватель ИТ, ЦИК, 2007.
Логические основы построения компьютера. Основные понятия алгебры логики Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые.
Математическая логика. Пон я тие высказываний Понятие высказываний Под высказыванием обычно понимают всякое повествовательное предложение, утверждающее.
С помощью логических переменных и символов логических операций любое высказывание можно заменить логическим выражением ( формулой). Алгебра логики – это.
Алгебра логики. Логическое умножение, сложение и отрицание. Диденко В.В.
Презентация группы «Проектировщиков». В ходе исследования наша группа решила следующие проблемные вопросы: 1. Смоделировала полусумматор с помощью логических.
Алгебра логики и логические основы компьютера.
ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОЙ ЛОГИКИ :18.
Элементы логики Составлено по учебнику Угринович «Информатика и информационные технологии.».
Математическая логика. Алгебра высказываний Высказывание- это форма мышления, в которой что-либо утверждается или отрицается о свойствах реальных предметов.
Логические основы ЭВМ Логика высказываний. Рассмотрим несколько утверждений Все рыбы умеют плавать Пять – число четное Некоторые медведи бурые Картины.
АЛГЕБРА ЛОГИКИ. ЧТО ТАКОЕ АЛГЕБРА ЛОГИКИ? Алгебра логикиАлгебра логики – раздел математики, изучающий высказывания, рассматриваемые со стороны их логических.
Транксрипт:

Логика - наука, изучающая законы и формы мышления. В логике мышление рассматривается как инструмент познания окружающего мира.

Создатель Логики Аристотель ( гг. до н.э.)

Джордж Буль

Логическое высказывание это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

«Трава зеленая» - высказывание, истина «Лев – птица» - высказывание, ложь

Не всякое предложение является логическим высказыванием. Высказываниями не является, например, предложение "ученик десятого класса"

Употребляемые в обычной речи слова и словосочетания "не", "и", "или", "если..., то", "тогда и только тогда" и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.

Bысказывания, образованные из других высказываний с помощью логических связок, называются составными.

Высказывания, не являющиеся составными, называются элементарными.

"Петров врач", "Петров шахматист" "Петров врач и шахматист", понимаемое как "Петров врач, хорошо играющий в шахматы".

При помощи связки "или" из этих же высказываний можно получить составное высказывание "Петров врач или шахматист", понимаемое в алгебре логики как "Петров или врач, или шахматист, или и врач и шахматист одновременно".

Чтобы обращаться к логическим высказываниям, им назначают имена. Пусть через А обозначено высказывание "Тимур поедет летом на море", а через В высказывание "Тимур летом отправится в горы".

Тогда составное высказывание "Тимур летом побывает и на море, и в горах" можно кратко записать как А и В. Здесь "и" логическая связка, А, В логические переменные, которые могут принимать только два значения - "истина" или "ложь", обозначаемые, соответственно, "1" и "0".

Какие из следующих предложений являются высказываниями? Наполеон был французским императором. Чему равно расстояние от Земли до Марса? Внимание! Посмотрите направо. Электрон - элементарная частица. Не нарушайте правил дорожного движения! Полярная звезда находится в созвездии Малой Медведицы.

НЕ Операция, выражаемая словом "не", называется инверсией или отрицанием и обозначается чертой над высказыванием.

И Операция, выражаемая связкой "и", называется конъюнкцией (лат. conjunctio соединение) или логическим умножением и обозначается точкой ". " (может также обозначаться знаками /\ или &).

ИЛИ Операция, выражаемая связкой "или" (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio разделение) или логическим сложением и обозначается знаком v (или плюсом).

ЕСЛИ-ТО Операция, выражаемая связками "если..., то", "из... следует", "... влечет...", называется импликацией (лат. implico тесно связаны) и обозначается знаком. Высказывание А В ложно тогда и только тогда, когда А истинно, а В ложно.

РАВНОСИЛЬНО Операция, выражаемая связками "тогда и только тогда", "необходимо и достаточно", "... равносильно...", называется эквиваленцией или двойной импликацией и обозначается знаком или ~. Высказывание А В истинно тогда и только тогда, когда значения А и В совпадают.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой.

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Схема И Схема И реализует конъюнкцию двух или более логических значений. & X Y F=X·Y

Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет ноль, на выходе также будет ноль. Таблица истинности схемы И XYX*Y

С х е м а ИЛИ Схема ИЛИ реализует дизъюнкцию двух или более логических значений. X Y F=X+Y 1

Таблица истинности схемы ИЛИ xyx v y Когда хотя бы на одном входе схемы ИЛИ бу дет единица, на её выходе также будет единица.

С х е м а НЕ Схема НЕ (инвертор) реализует операцию отрицания. Связь между входом x этой схемы и выходом F можно записать соотношением F = x где х читается как "не x" или "инверсия х". XF=X 1

Таблица истинности схемы НЕ xx Если на входе схемы 0, то на выходе 1. Когда на входе 1, на выходе 0.

С х е м а ИНЕ Схема ИНЕ состоит из элемента И и инвертора и осуществляет отрицание результата схемы И. Связь между выходом F и входами x и y схемы записывают следующим образом: F=x·y, где x·y читается как "инверсия x и y". X F=X·Y & Y

Таблица истинности схемы ИНЕ xyX*Y

С х е м а ИЛИНЕ Схема ИЛИНЕ состоит из элемента ИЛИ и инвертора и осуществляет отрицание результата схемы ИЛИ. Связь между выходом F и входами x и y схемы записывают следующим образом:F=x+y, где x+y, читается как "инверсия x или y ". X F=X+Y 1 Y

Таблица истинности схемы ИЛИ НЕ xyX+Y

Триггер это электронная схема, широко применяемая в регистрах компьютера для надёжного запоминания одного разряда двоичного кода. Триггер имеет два устойчивых состояния, одно из которых соответствует двоичной единице, а другое двоичному нулю.

Самый распространённый тип триггера так называемый RS- триггер (S и R, соответственно, от английских set установка, и reset сброс) S R Q Q

Сумматор это электронная логическая схема, выполняющая суммирование двоичных чисел. Сумматор служит, прежде всего, центральным узлом арифметико-логического устройства компьютера, однако он находит применение также и в других устройствах машины.

Многоразрядный двоичный сумматор