ШАР Мультимедийное пособие по стереометрии для 11 класса учителя математики МОУ «СОШ 15» г.Братска Аникиной А.И.

Презентация:



Advertisements
Похожие презентации
Объём шара, шарового сегмента, шарового слоя и шарового сектора.
Advertisements

Объем шара Теорема Объем шара радиуса R равен 4/3 πR 3 R x B O C M A Доказательство Рассмотрим шар радиуса R с центром в точке O и выберем ось Ox произвольным.
Определения Сфера-это фигура, состоящая из всех точек пространства, удалённых от данной точки на данном расстоянии. Сфера-это фигура, состоящая из всех.
Шаровой слой Шаровой слой Шаровой сегмент Шаровой сегмент Шаровой сектор Шаровой сектор Работу выполнила Ученица 11 класса Мыльникова Екатерина.
Тема: « Объем шара. Объем шарового сегмента ». Учитель: С. С. Вишнякова.
Тела вращения Шар. Сфера и шар. Тело, ограниченное сферой, называется шаром. Сферой называется поверхность, состоящая из всех точек пространства, расположенных.
Урок-лекция по теме: Геометрия –11 класс Сфера, шар основные характеристики Учитель математики МБОУ «СОШ 37» г. Новокузнецка Кривошеева Л. В.
Сфера Сфера и шар Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Данная точка.
Сфера и шар Выполнила Иванова Наталия 11 Б класс.
Тема: Объем шара и площадь сферы. Сфера – это поверхность, состоящая из всех точек пространства,С R R R расположенных на данном расстоянии (R) от данной.
Выполнила :Фокина о 11ж класс ВСОШ 7 Руководитель: Бессонова Т.Д. г. Мурманск 2008.
Научный руководитель: Комягина Наталья Валерьевна Выполнил: Смирнов Артём Евгеньевич 11 А Лицей N95.
Корниенко Татьяна Федоровна Геометрия 11 класс. Если в одной из 2 параллельных плоскостей взять окружность, и из каждой ее точки восстановить перпендикуляр.
Геометрия 11 класс. Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Точка О называется.
СФЕРА И ШАР. План презентации: Определение сферы, шара. Уравнение сферы. Взаимное расположение сферы и плоскости. Площадь сферы. Итог урока.
Бурак Анастасия 11 В Объём шара и его частей. Объём шара Объём шара радиуса R равен.
Тела вращения. Сфера и шар
Цилиндр, конус и шар Основные понятия.
Усеченный конус Сфера и шар. Определение : Тело, ограниченное двумя кругами, расположенными в параллельных плоскостях, и частью конической поверхности,
Тела вращения
Транксрипт:

ШАР Мультимедийное пособие по стереометрии для 11 класса учителя математики МОУ «СОШ 15» г.Братска Аникиной А.И.

R O Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки Данная точка называется центром сферы Данное расстояние – радиусом сферы Отрезок, соединяющий две точки сферы и проходящий через её центр, называется диаметром сферы

Сфера получена вращением полуокружности АСВ вокруг диаметра АВ. А С В Тело, ограниченное сферой, называется шаром Центр, радиус и диаметр сферы называется также центром, радиусом и диаметром шара

R M(x;y;z)M(x;y;z) C(x0;y0;z0)C(x0;y0;z0) z y x O Уравнение сферы Уравнение с тремя неизвестными x, y и z называется уравнением поверхности F МС = Если точка М лежит на данной сфере, то МС = R или МС 2 = R 2, т.е. координаты точки М удовлетворяют уравнению (х – х 0 ) 2 +(у – у 0 ) 2 +(z – z 0 ) 2 =R 2 Если точка М не лежит на данной сфере, то МС 2 R 2, т.е. координаты точки М не удовлетворяют уравнению. Следовательно, в прямоугольной системе координат уравнение сферы радиуса R с центром С(х 0 ;у 0 ;z 0 ) имеет вид (х – х 0 ) 2 +(у – у 0 ) 2 +(z – z 0 ) 2 =R 2

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ СФЕРЫ И ПЛОСКОСТИ α y x z C (0;0;d) O R 1 d < R. Тогда R 2 - d 2 > 0 r = Если расстояние от центра сферы до плоскости меньше радиуса сферы, то сечение сферы плоскостью есть окружность d

α RO Сечение шара плоскостью есть круг. Если секущая плоскость проходит через центр шара, то d = 0 и в сечении получается круг радиуса R, т.е. круг, радиус которого равен радиусу шара. Такой круг называется большим кругом шара

O d α y x z d = R Тогда R 2 – d 2 =0 Следовательно, точка О – единственная общая точка сферы и плоскости. Если расстояние от центра сферы до плоскости равно радиусу сферы, то сфера и плоскость имеют только одну общую точку. 2

α y x d z O 3 d > R Тогда R 2 – d 2 < 0, и уравнению не удовлетворяют координаты никакой точки. Если расстояние от центра сферы до плоскости больше радиуса сферы, то сфера и плоскость не имеют общих точек.

α О А Касательная плоскость к сфере Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью сферы. Их общая точка называется точкой касания плоскости и сферы. Теорема1:Радиус сферы, проведён- ный в точку касания сферы и плоскости, перпендикулярен касательной плоскости. Теорема2: Если радиус сферы перпендикулярен к плоскости, проходящий через его конец, лежащий на сфере, то эта плоскость является касательной к сфере.

За площадь сферы примем предел последовательности площадей поверхностей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. Получим формулу для вычисления площади сферы радиуса R: S = 4 π R 2

B O R r x M A x С ОБЪЁМ ШАРА Рассмотрим шар радиуса R и центром в точке О и выберем ось Ох произвольным образом Сечение шара плоскостью, перпендикулярной к оси Ох и проходящие через точку М на этой оси, является кругом с центром в точке М. Из прямоугольного треугольника ОМС находим Применяя основную формулу для вычисления объёмов, получим Так как S(x) = πr 2, то S(x) = π (R 2 - x 2 )

С О В α х АВ = h А Шаровым сегментом называется часть шара, отсекаемая от него какой – нибудь плоскостью. Круг, получившийся в сечении, называется основанием каждого из этих сегментов, а длины отрезков АВ и ВС диаметра АС – высотами сегментов.

ш а р о в о й с л о й С В А Шаровым слоем называется часть шара, заключённая между двумя параллельными секущими плоскостями Круги, получившиеся в сечении шара этими плоскостями, называются основаниями шарового слоя. Расстояние между плоскостями – высотой шарового слоя.

конус шаровой сегмент O r R Шаровым сектором называется тело, полученное вращением кругового сектора с углом, меньшим 90°, вокруг прямой, содержащей один из ограничивающих сектор радиусов. Шаровой сектор состоит из шарового сегмента и конуса