Операции над событиями Алгебраические действия с вероятностями событий.

Презентация:



Advertisements
Похожие презентации
Типы случайных событий и действия над ними. Теория вероятностей, 9 класс.
Advertisements

1 Теоремы сложения и умножения вероятностей. 2 Терминология Ω – множество всех возможных исходов опыта. ω – элементарное событие (неразложимый исход опыта).
Тема 2 Операции над событиями. Условная вероятность План: 1.Операции над событиями. 2.Условная вероятность.. Если и, то Часто возникает вопрос: насколько.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 12. Тема: Теоремы сложения и умножения вероятностей.
Событие, противоположное событию А – событие, которому благоприятствуют все элементарные события, не благоприятствующие событию А. Обозначение: А Если.
Автор: Яковлева Екатерина. Об авторе Ученица 8 «А» средней школы 427. Яковлева Екатерина Александровна Дата рождения года. Проект по Теории.
Элементы теории вероятностей По материалам учебника Гнеденко Б.В. «Курс теории вероятностей», 7-е издание, 2001.
Типы случайных событий и действия над ними. Пособие для учащихся 5-11 классов. Брезгина Людмила Дмитриевна учитель математики МКОУ СОШ д. Быданово Белохолуницкого.
Элементы теории вероятностей. 9 класс. ТЕМА Еремина Наталья Игоревна Учитель математики МОУ СОШ 3 г. Апатиты.
Элементы теории вероятностей для основной и средней школы.
Введение в комбинаторику и теорию вероятностей. 1) КомбинаторикаКомбинаторика 2) ФакториалФакториал 3) ПерестановкиПерестановки 4) РазмещенияРазмещения.
Тема урока: «Достоверные, невозможные и случайные события».
Учитель математики МОУ «СОШ 42»г. Воркуты Эркенова Г. Б.
Теория вероятностей и статистика П Работа Приснякова Михаила.
Ст. преп., к.ф.м.н. Богданов Олег Викторович 2010 Элементы теории вероятности.
Шепенко Г.Н.- учитель математики Берновской СОШ Старицкого р-на Тверской области.
Введение в комбинаторику и теорию вероятностей. 1) КомбинаторикаКомбинаторика 2) ФакториалФакториал 3) ПерестановкиПерестановки 4) РазмещенияРазмещения.
Теоремы умножения и сложения вероятностей Формула полной вероятности.
Основные понятия теории вероятностей Лекция 12. План лекции Случайные события и их классификация. Алгебра событий. Классическое и статистическое определение.
События А и В несовместны, если они не имеют общих благоприятствующих элементарных событий: А В = (пустое событие). Вероятность пересечения несовместных.
Транксрипт:

Операции над событиями Алгебраические действия с вероятностями событий

События 1.Исход эксперимента или наблюдения, который при реализации данного комплекса условий может произойти, а может и не произойти? 2. Событие, которое при реализации данного комплекса условий непременно произойдет? 3. Событие, которое заведомо не может произойти при реализации данного комплекса условий? 4. Элементарное событие называется …

Операции над множествами А = {4, 5, 6, 7}, B = {6, 7, 8, 9, 10, 11}

Событие – подмножество множества всех возможных исходов эксперимента U – множество всех возможных исходов ω – исход – элемент множества U А – событие

Диаграммы Эйлера U U ω A A ω

Противоположное событие и его вероятность A Ā Ā – событие, противоположное А Событие А: выпадет число меньше трех Множество исходов А = {1, 2}; Р(А) = Событие Ā: выпадет число больше или равное трем Множество исходов Ā= {3, 4, 5, 6}; Р(Ā) = Событие Е: выпадет пятерка Множество исходов Е = {5}; Р(Е) = Событие Ē = выпадет не пятерка Множество исходов Ē = {1, 2, 3, 4, 6}; Р(Ē) = Р(Ā) = 1 – Р(А)

Объединение и пересечение событий Объединением событий А и В называется событие С, которое происходит тогда и только тогда, когда происходит хотя бы одно из двух событий А или В Пересечением событий А и В называется событие С, которое происходит тогда и только тогда, когда происходят одновременно оба события А и В

Несовместные события Два события А и В называются несовместными, если их пресечение пусто Событие А: выпала тройка Событие В: выпала пятерка Р(А) = Р(В) = Событие С: выпала тройка или пятерка (С = А U В) Р(С) = Р(А U В) = Р(А) + Р(В) =

Формула сложения вероятностей для несовместных событий Р(А U В) = Р(А) + Р(В) В урне 3 красных и 5 желтых шаров. Какова вероятность того, что будут выбраны два шара одного цвета? Р(А 1 UА 2 U…UA k ) = Р(А 1 ) + Р(A 2 )+…+P(A k )

Формула сложения вероятностей для произвольных событий Если события А и В пересекаются, т.е. совместны, то вероятность их объединения можно найти по формуле Р(А U В) = Р(А) + Р(В) – Р(А В) Бросают два кубика. С какой вероятностью будет выброшена хотя бы одна шестерка? Событие А: шестерка выпала на первом кубике Событие В: шестерка выпала на втором кубике Событие А U В: шестерка выпала хотя бы на одном кубике Событие : выпали две шестерки Р(А U В) =

Независимые события Два события А и В называются независимыми, если выполняется равенство Р(А В) = Р(А) Р(В) Из первых n натуральных чисел наугад выбирается число. Событие А: выбранное число – четное. Событие В: выбранное число кратно трем. Выяснить, являются ли события А и В независимыми, если : 1) n = 10; 2) n = 20; 3) n = 30.

Независимые события Выясните, являются ли события А и В независимыми. 1) В одной урне находятся 5 белых и 7 красных шаров, а в другой – 6 белых и 6 красных шаров. Событие А: из 1-ой урны вынут белый шар Событие В: из 2-ой урны вынут белый шар 2) В урне находятся 5 белых и 7 красных шаров Событие А: первым вынут вынут белый шар Событие В: вторым вынут красный шар

Условные вероятности В урне находятся 5 белых и 7 красных шаров Событие А: первым вынут вынут белый шар Событие В: вторым вынут красный шар Р(А) = 5/12, Р(В|А) = 7/11