Презентацию выполнила Ученица 9 «А» класса МОУ СОШ 5 Холодова Оксана.

Презентация:



Advertisements
Похожие презентации
Научно-исследовательская работа на тему:«Паркеты» Выполнила: Ровная Екатерина, учащаяся 5 А класса Руководитель: Клепань Людмила Ивановна, учитель математики.
Advertisements

Цель работы – подробно изучить паркеты. Задачи Узнать историю паркетов Рассмотреть разные виды паркетов Познакомиться с паркетами в искусстве.
Выполнил: Ученик 8 А класса Подзоров Денис «С помощью математики мы только откроем дверь, ведущую в другой мир, и будем любоваться садом, лежащим за ней»
ПАРКЕТЫ Паркетом на плоскости называется такое заполнение плоскости многоугольниками, при котором любые два многоугольника либо имеют общую сторону, либо.
Паркеты Паркетом называется такое заполнение плоскости многоугольниками, при котором любые два многоугольника либо имеют общую сторону, либо имеют общую.
Паркеты Паркетом называется такое заполнение плоскости многоугольниками, при котором любые два многоугольника либо имеют общую сторону, либо имеют общую.
«Геометрические паркеты» Автор: Сметанина Карина учащаяся 9 «Б» класса МОУ «СОШ 76», г. Лесной. Руководитель: Королева Наталия Анатольевна, учитель математики.
Выполнил ученик МОУ «Поярковская СОШ 1» Мозговой В.
Паркеты История паркета Составление паркетов является искусством, которым в совершенстве владели крепостные мастера, создававшие паркеты во дворцах царей.
Уже пифагорейцам было известно, что имеется только три вида правильных многоугольников, которыми можно полностью замостить плоскость без пробелов и перекрытий.
Выполнил ученик 6в МОУ «СОШ 80 с УИОП» г.Хабаровска Соколов Иван.
Паркеты г.Чебоксары МОУ «Гимназия2» 5 «Б» класс Команды 1,2,3,4.
Правильные паркеты. Правильные паркеты. Проект подготовила учащаяся МОУ- СОШ 6 г. Маркса Жильникова Настя Жильникова Настя Руководитель: Мартышова Людмила.
Выполнил ученик 10 класса Саухин Артур. Сумма внутренних углов выпуклого n-угольника равна (n – 2) · 180º, где n – число сторон многоугольника. Сумма.
Научно - исследовательская работа «Геометрическая мозаика на плоскости» «Геометрическая мозаика на плоскости» Работу выполнил Ильичёв Евгений ученик 11.
Геометрические паркеты Выполнила: ученица 9 класса МОУ «Бестужевская общеобразовательная средняя школа» Ожигина Ольга Районная учебно-исследовательская.
МОУ Октябрьская средняя общеобразовательная школа Радищевского района Ульяновской области Выполнил ученик 8 класса Волик Павел Руководитель Волик Т.Г.,
Задачи на Построение сечений куба А B С D D1D1 С1С1 B1B1 А1А1 F Е.
научиться решать простейшие задачи на построение сечений тетраэдра и параллелепипеда.
Проблема четырех красок В 1850 году шотландский физик Фредерик Гутри обратил внимание на то, что задачи раскрашивания карт очень популярны среди студентов-математиков.
Транксрипт:

Презентацию выполнила Ученица 9 «А» класса МОУ СОШ 5 Холодова Оксана

Паркетом будем называть такое покрытие плоскости правильными многоугольниками, при котором два многоугольника имеют либо общую сторону, либо общую вершину или совсем не имеют общих точек. Паркет производит приятное впечатление, если он достаточно симметричен.

Паркет называется правильным, если его можно наложить на самого себя так, что любая заданная его вершин наложится на любую другую заданную его вершину. Существует конечное число правильных паркетов. В вершине паркета может сходиться не более шести и не менее трех многоугольников. Паркеты с тремя многоугольниками в вершине

Паркеты с четырьмя многоугольниками в вершине

Паркеты с пятью многоугольниками в вершине

Паркеты с шестью многоугольниками в вершине

Теперь займемся заполнением плоскости неправильными одинаковыми многоугольниками. Четырехугольником произвольной формы можно заполнить всю плоскость без пробелов и наложений.

Отметим, что четырехугольник может быть и невыпуклым.

Рассматривают и другое обобщение паркеты из копий произвольного многоугольника, правильные «по граням».Число таких паркетов 46. Многоугольники, которые могут быть плитками в этих паркетах, называются планигонами. Любой шестиугольник, противоположные стороны которого равны и параллельны – планигон.

И еще пять примеров.

Существуют и интересные непериодические замощения плоскости. Долгое время предполагали, что не существует плиток и даже наборов из нескольких различных плиток, копии которых могли бы устилать плоскость только непериодически. Однако в середине 60-х гг. XX в. эта гипотеза была опровергнута, и, наконец, в 1974 г. английскому математику Роджеру Пенроузу удалось обойтись всего двумя очень простыми фигурками. Вся плоскость покрыта ромбами.

Это другое квазипериодическое замощение плоскости, построенное Пенроузом. Вся плоскость покрыта четырьмя многоугольниками специального вида. Это звезда, ромб, правильный пятиугольник и «бумажный кораблик».

Очень красивое спиральное замощение плоскости девятиугольниками, придуманное в 1936 г. немецким математиком X. Фодербергом. Оно составлено из большого числа конгруэнтальных девятиугольников. Оказывается конфигурация может быть продолжена до бесконечности; при этом девятиугольники продолжают разворачиваться по « двойной спирали » и заполняют всю плоскость (без пробелов и наложений друг на друга).

На этой картинке показано квазикристаллическое замощение плоскости двумя цыплятами, придуманное Роджером Пенроузом.

Паркеты с древних времен привлекали к себе внимание людей. Им, в частности, посвящены многие замечательные картины М. Эшера.