Тема урока: «Правильная пирамида».. Цели урока: –введение понятия правильной пирамиды; –рассмотрение свойств правильной пирамиды; –введение понятия апофема;

Презентация:



Advertisements
Похожие презентации
Пирамида высотой Перпендикуляр, проведенный из вершины пирамиды к плоскости основания, называется высотойпирамиды А 1 А 1 А 2 А 2 АnАn Р А 3 А 3 Многогранник,
Advertisements

Выполнила учитель математики высшей категории МАОУ « Гимназия 1» городского округа г. Стерлитамак Республики Башкортостан.
Правильная пирамида подготовила учитель математики Корепанова З.И.
А1А1 А2А2 АnАn Р А3А3 Многогранник, составленный из n-угольника А 1 А 2 …А n n треугольников, называется пирамидой. Вершина Н высотой пирамиды Перпендикуляр,
Пирамида Подготовили : Асадова Ламия, Шимонаев Павел, Волкова Екатерина, Балыбин Артем, Олзоев Тимур.
Геометрия Пирамида. Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания.
Слово «пирамида» греческое. По мнению одних исследователей, большая куча пшеницы большая куча пшеницы и стала прообразом и стала прообразом пирамиды.
Предварительное определение уровня знаний 1.Многогранник,составленный из n-угольника и n-треугольников называется пирамидой. 2.Высота пирамиды, это перпендикуляр,
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 14» Занятие элективного курса по теме «Развертка пирамиды» «Развертка пирамиды»
Пирамида Пирамида. Построение изображения правильной треугольной пирамиды.
Пирамида Многогранник, составленный из многоугольника A 1 A 2 …A n и n треугольников называется n-угольной пирамидой.
Пирамида Пирамидой – называется многогранник, который состоит из плоского многоугольника (основания пирамиды), точка, не лежащей в плоскости основания(вершины.
А1А1 А2А2 АnАn Р А3А3 Многогранник, составленный из n-угольника А 1 А 2 …А n n треугольников, называется пирамидой. Вершина Н высотой пирамиды Перпендикуляр,
Двугранный угол Двугранный угол – это фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Грань Ребро Грань Линейный угол.
Шар, вписанный в многогранник Шар называется вписанным в многогранник, если он касается всех граней данного многогранника.
Пирамида.
апофема высота боковой грани правильной пирамиды, проведённая из её вершины; боковые грани треугольники, сходящиеся в вершине; боковые ребра общие стороны.
Тема урока: «Разные задачи на многогранники, цилиндр, конус и шар»
Шары и многогранники презентация к лекции В.П. Чуваков.
Комбинации шара с пирамидой. Определение Пирамида называется вписанной в шар, если все ее вершины лежат на границе этого шара. При этом шар называется.
Транксрипт:

Тема урока: «Правильная пирамида».

Цели урока: –введение понятия правильной пирамиды; –рассмотрение свойств правильной пирамиды; –введение понятия апофема; –рассмотрение задач на нахождение элементов правильной пирамиды

Ответить на вопросы Сформулируйте определение пирамиды. Покажите на модели (чертеже) ее элементы. Сформулируйте определение высоты пирамиды. Сколько граней, перпендикулярных к плоскости основания, может иметь пирамида? Существует ли четырехугольная пирамида, у которой противоположные боковые грани перпендикулярны к основанию? Могут ли все грани треугольной пирамиды быть прямоугольными треугольниками? Что называется площадью боковой поверхности пирамиды, площадью полной поверхности пирамиды?

Р О А1А1 АnАn А3А3 А2А2 Н Н1Н1 Двугранные углы при основании пирамиды равны. Докажите, что высота пирамиды проходит через центр окружности, вписанной в основания. Вопросы : Какая окружность называется вписанной в многоугольник? Сформулируйте определение двугранного угла. Как построить линейный угол двугранного угла? Сформулируйте теорему о трех перпендикулярах.

О Р А1А1 А2А2 АnАn В пирамиде все боковые ребра равны между собой. Докажите, что высота пирамиды проходит через центр окружности, описанной около основания. Вопросы : Какая окружность называется описанной около многоугольника? Как построить угол между боковым ребром и плоскостью пирамиды?

О В правильном многоугольнике центры вписанной и описанной окружностей совпадают. Это точка – центр правильного многоугольника. r R R – радиус окружности, описанной около многоугольника т. О – центр правильного многоугольника r – радиус окружности, вписанной в многоугольник

Формулы для вычисления элементов правильного многоугольника: квадрат правильный шестиугольник правильный восьмиугольник равносторонний треугольник

Пирамида – правильная, если 1) ее основание – правильный многоугольник; 2) ее высота – отрезок, соединяющий вершину пирамиды с ее центром. А2А2 АnАn А1А1 Р О

ABC – правильный; О – точка пересечения медиан (высот и биссектрис), центр вписанной и описанной окружностей. ABCD – квадрат; О – точка пересечения диагоналей. ABCDEF – правильные шестиугольник; О – точка пересечения диагоналей AD, BE и FC.

Египетские пирамиды

В ПРАВИЛЬНОЙ ПИРАМИДЕ: 1.Боковые ребра образуют равные углы с плоскостью основания 2.Боковые ребра образуют равные углы с высотой 3.Боковые грани образуют равные углы с основанием 4.Высота пирамиды образует равные углы с высотами боковых граней 5.Апофемы равны АnАn А2А2 Р О

МН - апофема Апофема – высота боковой грани правильной пирамиды, проведенная из ее вершины Сколько апофем в правильной пирамиде? Равны ли апофемы правильной пирамиды друг другу? Почему? Сколько высот в пирамиде? Задание для учащихся: Провести апофему правильной шестиугольной пирамиды.

В правильной четырехугольной пирамиде построить: В правильной четырехугольной пирамиде построить: а) угол между боковым ребром и плоскостью основания; угол между боковым ребром и плоскостью основания;угол между боковым ребром и плоскостью основания; б) линейный угол двугранного угла при основании; линейный угол двугранного угла при основании;линейный угол двугранного угла при основании; в) линейный угол двугранного угла между боковыми гранями. линейный угол двугранного угла между боковыми гранями.линейный угол двугранного угла между боковыми гранями.

Дано: MAВCD – правильная пирамида. Построить: (AM ; ABCD). Построение: МО ABCD; AO – проекция AD на плоскость основания; (AM ; ABCD) = МAO.

Дано: MAВCD – правильная пирамида. Построить: (CMD ; ABCD). Построение: Проведем апофему МН. МO AВСD ; НО – проекция МН на ABCD. Следовательно, НО CD. (СMВ ; ABCD) = МНО.

Дано: MAВCD – правильная пирамида. Построить: (AВM ; BМC). Построение: 1) OK MB; 2) MB AC, MB AC; 3) MB AKC; 4) AK MB; CK MB; 5) (ABM ; BMC) = AKC.

АnАn А1А1 Р О Какая пирамида называется правильной? Являются ли равными боковые ребра правильной пирамиды? Чем являются боковые грани правильной пирамиды? Что называется апофемой? Сколько высот в пирамиде? Сколько апофем в пирамиде?

§ 2 п (а, в, г)