Золотое сечение в геометрии. Правило Золотого Сечения впервые сформулировано Евклидом. Вкратце оно определяется так: отношение целого к большей части.

Презентация:



Advertisements
Похожие презентации
Проект выполнили: ученик 11 А класса Коновалов Даниил, ученица 6 В класса Коновалова Дарья Руководитель: Шершнева Е.Г., учитель математики.
Advertisements

Золотое сечение. Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части,
Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая.
1. «Золотое сечение» в математике 2. «Золотое сечение» в скульптуре 3. «Золотое сечение» в архитектуре 4. «Золотое сечение» в живописи 5. «Золотое сечение»
1. «Золотое сечение» в математике 2. «Золотое сечение» в скульптуре 3. «Золотое сечение» в архитектуре 4. «Золотое сечение» в живописи 5. «Золотое сечение»
Какое значение имеет золотое сечение в искусстве, архитектуре, скульптуре…? Какое значение имеет золотое сечение в искусстве, архитектуре, скульптуре…?
МОУ СОШ 1 ЗОЛОТОЕ СЕЧЕНИЕ Учитель математики Учитель математики высшей категории высшей категории Л.В. Рысева Л.В. Рысева ст. Отрадная г.
«ЗОЛОТОЕ СЕЧЕНИЕ» О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Что же такое «золотое сечение»?.. Может быть, это закон красоты?
Золотое сечение. Числа Фибоначчи Математический язык.
Довбий Анна Андреевна ученица 7а класса Муниципальное автономное общеобразовательное учреждение Средняя общеобразовательная школа 4 Научный руководитель.
Пропорции в математике и изобразительном искусстве. Учитель математики Шумилова А.В. Учитель ИЗО Дубовицких М.А. МБОУ лицей 5 г. Воронеж.
Проект «Золотое сечение» Выполнила Глущенко Наталья Сергеевна учитель математики МОУ-СОШ с. Карпенка.
Золотое сечение Чувствам человека приятны объекты, Чувствам человека приятны объекты, обладающие правильными пропорциями. обладающие правильными пропорциями.
ЗОЛОТОЕ СЕЧЕНИЕ. История золотого сечения Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор Принято считать, что понятие о.
МОУ «Шарапово – Охотская средняя общеобразовательная школа» Проектная работа по теме: Выполнили ученики 6 класса: Симарова Анастасия Изгаршев Егор Изгаршев.
Исследовательская работа по математике Золотое сечение Выполнил: ученик 6 класса 3 Варсеев Дмитрий Брянский городской лицей 1 имени А.С.Пушкина.
Золотое сечение Выполнила: ученица 6в класса МОУ СОШ 26 г. Благовещенска Гончарова Светлана.
А вы знаете что такое золотое сечение?. Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится.
Золотое сечение Хен Евгения Группа Л11-5 Реферат.
Транксрипт:

Золотое сечение в геометрии

Правило Золотого Сечения впервые сформулировано Евклидом. Вкратце оно определяется так: отношение целого к большей части должно равняться отношению большей части к меньшей. Таким образом, по Платону, достигается ощущение "наиболее совершенного единого целого". Проблему гармонии на Земле и во Вселенной принято считать вечной. Древние мыслители сводили цель науки к поиску объективной гармонии. В понятие гармонии Пифагор ( гг. до нашей эры) включали симметрию и отношения целого и его частей - "золотое сечение"

Важно отметить два вида проявлений Золотого Сечения в живой природе: 1. иррациональные отношения по Пифагору целочисленные, дискретные - по Фибоначчи.

Одна из задач Фибоначчи гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 и так далее. Для того, чтобы получить каждое следующее число в этом ряду, надо сложить два предыдущих: 1+1=2, 1+2=3, 2+3=5, 3+5=8, 5+8=13 и так далее.

Пифагор был первым, кто обратил внимание на особое «гармоничное» деление любого отрезка, позднее названное «золотым сечением». Приближенные значения таковы: 1,

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу

Изучая конструкции раковин, ученые обратили внимание на то, что форма раковин поражает своим совершенством и экономичностью средств, затраченных на ее создание. Идея спирали в раковинах выражена не приближенно, а в совершенной геометрической форме, в удивительно красивой, "отточенной" конструкции У большинства улиток, которые обладают раковинами, раковина растет в форме спирали, которая точно соответствует "золотой пропорции"

Золотое сечение присутствует в строении всех кристаллов, но большинство кристаллов микроскопически малы, так что мы не можем разглядеть их невооруженным глазом. Однако снежинки, также представляющие собой водные кристаллы, вполне доступны нашему взору. Золотое сечение присутствует в строении всех кристаллов, но большинство кристаллов микроскопически малы, так что мы не можем разглядеть их невооруженным глазом. Однако снежинки, также представляющие собой водные кристаллы, вполне доступны нашему взору.

Портрет Моны Лизы (Джоконда) привлекает тем, что композиция рисунка построена на "золотых треугольниках». Таким образом, Леонардо Да Винчи использовал в своей картине не только принцип симметрии, но и Золотое сечение

Интересные сведения о периодах жизни человека, связанные с числами Фибоначчи. Критические возрасты мужчин соответствуют следующим годам: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,… Периодичность в жизни женщины подчиняется ряду Люка: 1, 3, 4, 7, 11, 18, 29, 47, 76, 123. Сдвижка возрастных интервалов объясняется более ранним развитием девочек.

В фотографии используется упрощенный вариант построения «Золотого сечения» или правило «Трети». Заключается оно в следующем: мы мысленно делим кадр на три части по горизонтали и вертикали и, в точках пересечения воображаемых линий, размещаем ключевые детали снимаемой сцены.

Знаменитый русский архитектор М.Ф.Казаков широко использовал в своем творчестве золотое сечение. Его талант был многогранным, но в большей степени он проявился в многочисленных проектах жилых домов и усадеб. Например, золотое сечение можно встретить в архитектуре здания бывшего сената в Кремле, Дворца в Петровском Алабине и Голицынской больницы в Москве

С помощью правильных пропорций можно получать гармоничные образы, скорректировать недостатки фигуры, а это важно в профессии закройщика.

Таким образом всё в нашем мире без исключения подчиняется закону золотого сечения и это всегда было есть и будет.