Теорема Пифагора История теоремыФормулировка Доказательство Саша Омаров 8 В класс.

Презентация:



Advertisements
Похожие презентации
Теорема Пифагора Пребудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора верна, Как и в его далёкий век. А. Шамиссо Учитель:
Advertisements

Пифагор – кто он? древнегреческий философ, математик и мистик, создатель религиозно- философской школы пифагорейцев.философ математикмистикрелигиозно-
Египетский треугольник. 8 класс. Ты может быть прав, Пифагор, но каждый начнёт смеяться, если ты назовёшь это «гипотенузой».
Геометрия владеет двумя сокровищами : одно из них – это теорема Пифагора Иоганн Кеплер.
Теорема Пифагора Теорема Пифагора Пребудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век.
2011г. МОУ «ООШ с.Никольское Духовницкого района Саратовской области» Теорема Пифагора.
Творческая работа ученика 9а класса Нефедова Владислава. Муниципальное учреждение «Средняя общеобразовательная школа 89» г. Северск Томской области.
«Теорема Пифагора» Проект выполнила: Ученица 11 «Б» кл. Марчук Лилия Руководитель: Зурабова Т.Н.
© Yanshina 2006 «…Геометрия владеет двумя сокровищами: Одно из них - это теорема Пифагора, и другое - деление отрезков в среднем и крайнем отношении…
Теорема, обратная теореме Пифагора Конспект урока.
История теоремы Пифагора Пифагор Самосский. Долгое время считали, что до Пифагора эта теорема не была известна. В настоящее время установлено, что эта.
Теорема Пифагора. Доказательство и применение. Презентацию подготовила Липатова Алёна ученица 8а класса ГОУ СОШ 119.
Руденко Людмила Анатольевна МОУ СОШ 71 ТЕОРЕМА ПИФАГОРА " Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора..." Теорема..ДоказательствоДоказательство.Задания.
Найдите : Задача Доказать: KMNP – квадрат. 1)Треугольник KВМ равен треугольнику MСN. 3) В четырехугольнике KMNP все стороны равны = 90°
Руденко Людмила Анатольевна МОУ СОШ 71 ТЕОРЕМА ПИФАГОРА " Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора..." Теорема..ДоказательствоДоказательство.Задания.
ТЕОРЕМА ПИФАГОРА "Геометрия обладает двумя великими сокровищами Первое-это теорема Пифагора..."
Составили : учащиеся 8Б класса МОУ СОШ 1 г. Фрязино Болдышева Яна, Демидова Александра.
МОУ Сургутская СОШ Фомина Елена Геннадьевна Домашняя работа 472 Площадь прямоугольного треугольника равна 168 см². Найдите его катеты, если отношение.
Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство « убогих.
ТЕОРЕМА ПИФАГОРА "Геометрия обладает двумя великими сокровищами Первое-это теорема Пифагора..."
Транксрипт:

Теорема Пифагора История теоремыФормулировка Доказательство Саша Омаров 8 В класс

История теоремы Древний КитайЕгипет Карикатуры

Из книги Чу-пей В этом сочинении говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". Рисунок из книги

Из папируса 6619 По мнению крупнейшего немецкого историка математики Кантора равенство = 5 2 было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619

Теорема Пифагора в средние века Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его бегство "убогих", так как некоторые "ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также "ветряной мельницей", составляли стихи вроде "Пифагоровы штаны на все стороны равны", рисовали карикатуры.

Формулировка теоремы Во времена Пифагора теорема звучала так: Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах. или Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах

Современная формулировка В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов». Формула - c² = a² + b² Формула - c² = a² + b²

Доказательство Рассмотрим квадрат, показанный на рисунке. Сторона квадрата равна a + c. а с

а с а ас с В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника с катетами a и c. В одном случае (слева) квадрат разбит на квадрат со стороной b и четыре прямоугольных треугольника с катетами a и c. В другом случае (справа) квадрат разбит на два квадрата со сторонами a и c и четыре прямоугольных треугольника с катетами a и c. Таким образом, получаем, что площадь квадрата со стороной b равна сумме площадей квадратов со сторонами a и c. чтд