Определение. Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости. СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ.

Презентация:



Advertisements
Похожие презентации
Определение. Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости. СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ.
Advertisements

Определение. Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости. СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ.
Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Параллельные прямые.
ПАРАЛЛЕЛЬНОСТЬ ПРЯМЫХ В ПРОСТРАНСТВЕ Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Параллельность прямых.
Определение. Две плоскости в пространстве называются параллельными, если они не пересекаются. ПАРАЛЛЕЛЬНОСТЬ ПЛОСКОСТЕЙ В ПРОСТРАНСТВЕ.
Определение. Прямая называется параллельной плоскости, если она не имеет с ней ни одной общей точки. ПАРАЛЛЕЛЬНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ.
Определение. Прямая называется параллельной плоскости, если она не имеет с ней ни одной общей точки. ПАРАЛЛЕЛЬНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ.
Определение. Две плоскости в пространстве называются параллельными, если они не пересекаются. ПАРАЛЛЕЛЬНОСТЬ ПЛОСКОСТЕЙ В ПРОСТРАНСТВЕ.
Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Параллельность прямых Для отношения.
Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Параллельность прямых Для отношения.
Определение. Прямая называется параллельной плоскости, если она не имеет с ней ни одной общей точки. ПАРАЛЛЕЛЬНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ.
Определение. Две плоскости в пространстве называются параллельными, если они не имеют общих точек. ПАРАЛЛЕЛЬНОСТЬ ПЛОСКОСТЕЙ В ПРОСТРАНСТВЕ.
ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости. Теорема.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ И ПЛОСКОСТИ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
ДВИЖЕНИЕ Движением называется преобразование пространства, сохраняющее расстояния между точками, т. е., если точки A и B переходят соответственно в точки.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
10 класс 1. Сколько существует плоскостей, проходящих через данные прямую и точку в пространстве? (А) 0 (Б) 1 (В) бесконечно много (Г) 0 или бесконечно.
Транксрипт:

Определение. Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости. СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ

Две прямые Лежат в одной плоскостиНе лежат в одной плоскости (скрещиваются) Имеют общую точку (пересекаются) Не имеют общих точек (параллельны) ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПРЯМЫХ В ПРОСТРАНСТВЕ

Если одна прямая лежит в данной плоскости, а другая прямая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти две прямые скрещиваются. Доказательство. Пусть прямая a лежит в плоскости, а прямая b пересекает плоскость в точке B, не принадлежащей прямой a. Если бы прямые a и b лежали в одной плоскости, то в этой плоскости лежала бы и точка B. Поскольку через прямую и точку вне этой прямой проходит единственная плоскость, то этой плоскостью должна быть плоскость. Но тогда прямая b лежала бы в плоскости, что противоречит условию. Следовательно, прямые a и b не лежат в одной плоскости, т.е. скрещиваются. ПРИЗНАК СКРЕЩИВАЮЩИСЯ ПРЯМЫХ

Ответ: Нет. Всегда ли две не пересекающиеся прямые в пространстве параллельны? Упражнение 1

Ответ: Скрещиваются. Как расположены в пространстве прямые a и b, проведенные в плоскостях и ? Упражнение 2

Ответ: Скрещиваются. Как в пространстве расположены прямые EF и GH, проведенные в плоскостях граней куба A…D 1 ? Упражнение 3

Ответ: Скрещиваются. Как в пространстве расположены прямые EF и GH, проведенные в плоскостях граней тетраэдра? Упражнение 4

Ответ: Скрещиваются. Как в пространстве расположены прямые EH и FG? Упражнение 5

В тетраэдре ABCD укажите пары скрещивающихся ребер. Ответ: AB и CD; BC и AD; AC и BD. Упражнение 6

Ответ: A 1 D 1 ; B 1 C 1 ; DD 1 ; CC 1. Дан куб A…D 1. Назовите прямые, проходящие через вершины этого куба и скрещивающиеся с прямой AB. Упражнение 7

Решение: Каждое ребро участвует в четырех парах скрещивающихся прямых. У куба имеется 12 ребер. Следовательно, искомое число пар параллельных прямых равно Сколько имеется пар скрещивающихся прямых, содержащих ребра куба A…D 1 ? Упражнение 8

Сколько имеется пар скрещивающихся прямых, содержащих ребра правильной треугольной призмы? Решение: Для каждого ребра оснований имеется три ребра, с ним скрещивающихся. Для каждого бокового ребра имеется два ребра, с ним скрещивающихся. Следовательно, искомое число пар скрещивающихся прямых равно Ответ: Упражнение 9

Сколько имеется пар скрещивающихся прямых, содержащих ребра правильной шестиугольной призмы? Решение: Каждое ребро оснований участвует в 8 парах скрещивающихся прямых. Каждое боковое ребро участвует в 8 парах скрещивающихся прямых. Следовательно, искомое число пар скрещивающихся прямых равно Ответ: Упражнение 10

Сколько имеется пар скрещивающихся прямых, содержащих ребра октаэдра? Решение: Для каждого ребра имеется четыре ребра, с ним скрещивающихся. У октаэдра 12 ребер. Следовательно, искомое число пар скрещивающихся прямых равно Упражнение 11

Сколько имеется пар скрещивающихся прямых, содержащих ребра икосаэдра? Решение: Для каждого ребра имеется 20 ребер, с ним скрещивающихся. У икосаэдра 30 ребер. Следовательно, искомое число пар скрещивающихся прямых равно Упражнение 12

Сколько имеется пар скрещивающихся прямых, содержащих ребра додекаэдра? Решение: Для каждого ребра имеется 24 ребра, с ним скрещивающихся. У додекаэдра 30 ребер. Следовательно, искомое число пар скрещивающихся прямых равно Упражнение 13

Карандаши Возможно ли такое расположение карандашей?