Определение. Прямая называется параллельной плоскости, если она не имеет с ней ни одной общей точки. ПАРАЛЛЕЛЬНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ
Теорема. Если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в этой плоскости, то прямая параллельна самой плоскости. ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ ПРЯМОЙ И ПЛОСКОСТИ
Прямая и плоскость Имеют общие точки Не имеют общих точек (параллельны) Имеют одну общую точку (пересекаются) Имеют более одной общей точки (прямая лежит в плоскости) ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ
Верно ли утверждение о том, что две прямые, параллельные одной и той же плоскости, параллельны между собой? Ответ: Нет. Вопрос 1
Верно ли утверждение: "Прямая, параллельная плоскости, параллельна любой прямой, лежащей в этой плоскости"? Ответ: Нет. Вопрос 2
Одна из двух параллельных прямых параллельна плоскости. Верно ли утверждение, что и вторая прямая параллельна этой плоскости? Ответ: Нет. Вопрос 3
Даны две параллельные прямые. Через каждую из них проведена плоскость. Эти две плоскости пересекаются. Как расположена их линия пересечения относительно данных прямых? Ответ: Параллельна. Вопрос 4
Даны две пересекающиеся плоскости. Существует ли плоскость, пересекающая две данные плоскости по параллельным прямым? Ответ: Да. Вопрос 5
Сторона AF правильного шестиугольника ABCDEF лежит в плоскости α, не совпадающей с плоскостью шестиугольника. Как расположены остальные стороны ABCDEF относительно плоскости α? Ответ: AB, BC, DE, EF пересекают плоскость; CD параллельна плоскости. Упражнение 1
б) CDD 1, A 1 C 1 D; В кубе A…D 1 укажите плоскости, проходящие через вершины куба, параллельные прямой: а) AA 1 ; б) AB 1 ; в) AC 1. Ответ: а) BCC 1, CDD 1, BDD 1 ;в) нет. Упражнение 2
в) BCC 1, EFF 1 ; В правильной шестиугольной призме назовите плоскости, проходящие через ребра призмы и параллельные прямой: а) AB 1 ; б) AC 1 ; в) AD 1. б) DFF 1 ;Ответ: а) DEE 1, CFF 1 ; Упражнение 3
Ответ: а) 10; Сколько плоскостей проходит через вершины правильной шестиугольной призмы, параллельных прямой: а) AA 1 ; б) AB? б) 6. Упражнение 4
Сколько имеется пар параллельных прямых и плоскостей, содержащих ребра куба A…D 1 ? Решение: Для каждого ребра имеется две грани, ей параллельные У куба имеется 12 ребер. Следовательно, искомое число пар параллельных прямых и плоскостей равно 24. Упражнение 5
Сколько имеется пар параллельных прямых и плоскостей, содержащих ребра октаэдра? Решение: Для каждого ребра имеется две грани, ей параллельные. У октаэдра 12 ребер. Следовательно, искомое число пар параллельных прямых и плоскостей равно 24. Упражнение 6
Сколько имеется пар параллельных прямых и плоскостей, содержащих ребра икосаэдра. Решение: Для каждого ребра имеется две грани, ей параллельные. У икосаэдра 30 ребер. Следовательно, искомое число пар параллельных прямых и плоскостей равно 60. Упражнение 7
Сколько имеется пар параллельных прямых и плоскостей, содержащих ребра додекаэдра. Решение: Для каждого ребра имеется две грани, ей параллельные. У додекаэдра 30 ребер. Следовательно, искомое число пар параллельных прямых и плоскостей равно 60. Упражнение 8
Даны две скрещивающиеся прямые. Как через одну из них провести плоскость, параллельную другой? Решение: Через точку одной прямой провести прямую, параллельную второй данной прямой. Затем через полученные пересекающиеся прямые провести плоскость. Она будет параллельна второй данной прямой. Упражнение 9
В основании четырехугольной пирамиды SABCD лежит параллелограмм. Каково взаимное расположение прямой пересечения плоскостей граней SAB и SCD и плоскости основания ABCD? Ответ: Параллельны. Упражнение 10