Сфера. Уравнение сферы. Взаимное расположение сферы и плоскости.

Презентация:



Advertisements
Похожие презентации
Тела вращения. Сфера и шар
Advertisements

Сфера и шар Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Тело, ограниченное.
Тела вращения Шар. Сфера и шар. Тело, ограниченное сферой, называется шаром. Сферой называется поверхность, состоящая из всех точек пространства, расположенных.
Цель урока 1)Вывести понятие сферы, шара, и их элементов. 2)Вывести уравнение сферы в заданной прямоугольной системе координат 3)Формировать навык решения.
СФЕРА И ШАР. СФЕРА Определение: Сферой называется Сферой называется поверхность, состоящая поверхность, состоящая из всех точек пространства, из всех.
Сфера Сфера и шар Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Данная точка.
Геометрия 11 класс. Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Точка О называется.
Называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. R – радиус сферы О – центр сферы.
1.Уравнение сферы. 2.Взаимное расположение сферы и плоскости. 3.Касательная плоскости к сфере. 4.Площадь сферы.
. СФЕРОЙ НАЗЫВАЕТСЯ ПОВЕРХНОСТЬ, СОСТОЯЩАЯ ИЗ ВСЕХ ТОЧЕК ПРОСТРАНСТВА, РАСПОЛОЖЕННЫХ НА ДАННОМ РАСТОЯНИИ ОТ ДАННОЙ ТОЧКИ. О- центр сферы.
СФЕРА И ШАР. План презентации: Определение сферы, шара. Уравнение сферы. Взаимное расположение сферы и плоскости. Площадь сферы. Итог урока.
ШАР Мультимедийное пособие по стереометрии для 11 класса учителя математики МОУ «СОШ 15» г.Братска Аникиной А.И.
Определение …….. R ……. называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии (R) от данной точки (центра т.О).
СФЕРА И ШАР Геометрия –11 класс Липатова Е.Ю. – учитель математики МБОУ гимназии 17.
Сфера и шар Выполнила Иванова Наталия 11 Б класс.
Сфера и шар. Уравнение сферы.. Окружность – геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки.
Цели урока: Ввести понятие сферы и ее элементов Вывести уравнение сферы Рассмотреть возможные случаи взаимного расположения сферы и плоскости Рассмотреть.
Проверка домашнего задания Образующая конуса равна 6, а угол между ней и плоскостью основания равен 60. Найдите: а) площадь полной поверхности конуса;
Презентация к уроку по геометрии (11 класс) по теме: Презентация по геометрии "Сфера и шар"
Взаимное расположение сферы и плоскости. 579 (б, в) 574 (а), 577 (а)
Транксрипт:

Сфера. Уравнение сферы. Взаимное расположение сферы и плоскости.

Цели урока: Ввести понятие сферы, шара и их элементов Вывести уравнение сферы в заданной прямоугольной системе координат Рассмотреть возможные случаи взаимного расположения сферы и плоскости Формировать навык решения задач по теме

Окружность Окружность – множество точек плоскости, равноудаленных от данной точки Точка О – центр окружности ОА - радиус О А

Сфера Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки Точка О – центр сферы Данное расстояние – радиус сферы (обозначается R)

Сфера Отрезок, соединяющий две точки сферы и проходящий через ее центр – диаметр сферы (равен 2R) Сфера может быть получена вращением полуокружности (АСВ) вокруг ее диаметра (АВ) О

Шар Тело, ограниченное сферой, называется шаром Шаром радиуса R и с центром в точке О называется тело, которое содержит все точки пространства, расположенные от точки О на расстоянии, не превышающем R (включая О), и не содержит других точек

Уравнение сферы Пусть R – радиус сферы С(х,у,z) – центр окружности Расстояние от произвольной точки М(х,у,z) до точки С найдем по формуле Если точка М лежит на данной сфере, МС = R, или Координаты точки М удовлетворяют уравнению

Решение задач 574(а) 576 (а) 577 (а) 578 (устно)

Взаимное расположение сферы и плоскости Обозначения R – радиус сферы d – расстояние от центра до плоскости α Плоскость Оху совпадает с плоскостью α, поэтому ее уравнение имеет вид z=0 Центр сферы С лежит на положительной полуоси Оz, т.е. имеет координаты С(0;0;d) Уравнение сферы

Взаимное расположение сферы и плоскости Если координаты произвольной точки М (х;у;z) удовлетворяют обоим уравнениям, то М лежит как в плоскости α, так и на сфере. Вопрос о взаимном расположении сводится к исследованию системы уравнений Подставив z = 0 во второе уравнение, получим

Взаимное расположение сферы и плоскости 1) d < R

Взаимное расположение сферы и плоскости 2) d = R

Взаимное расположение сферы и плоскости 3) d > R

Решение задач

Домашнее задание п.64 – (в) 577 (в) 581