Теорема 1 Каждая сторона треугольника меньше суммы двух других сторон. Доказательство. Рассмотрим треугольник АВС. Отложим на продолжении стороны АВ отрезок.

Презентация:



Advertisements
Похожие презентации
Теорема 1 Каждая сторона треугольника меньше суммы двух других сторон. Доказательство. Рассмотрим треугольник АВС. Отложим на продолжении стороны АВ отрезок.
Advertisements

Теорема Длина отрезка, соединяющего концы ломаной, не превосходит длины самой ломаной. Доказательство. Рассмотрим, например, ломаную ABCDE. Заменим соседние.
Теорема Каждая сторона треугольника меньше суммы двух других сторон. Доказательство. Рассмотрим треугольник АВС. Отложим на продолжении стороны АВ отрезок.
Теорема 1 Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним. Доказательство. Пусть АВС – произвольный треугольник.
Средняя линия треугольника Урок 1. I. Устная работа 1) Может ли треугольник быть невыпуклым? 2) Где расположена точка пересечения высот прямоугольного.
Трапеция Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны. Трапеция называется равнобедренной, если.
Средняя линия треугольника Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Трапеция Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны. Трапеция называется равнобедренной, если.
Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним. Доказательство. Пусть АВС – произвольный треугольник. Рассмотрим,
Изопериметрическая задача Изопериметрической задачей называют задачу о нахождении фигуры наибольшей площади, ограниченной кривой заданной длины (периметра)
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Признак параллелограмма Теорема 1. (Первый признак параллелограмма.) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник -
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Теорема косинусов Теорема (косинусов). Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон.
Равнобедренные треугольники Треугольник называется равнобедренным, если у него две стороны равны (рис. 1). Эти равные стороны называются боковыми сторонами,
Параллелограмм Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Подобие треугольников Два треугольника называются подобными, если углы одного соответственно равны углам другого и соответствующие стороны пропорциональны.
Транксрипт:

Теорема 1 Каждая сторона треугольника меньше суммы двух других сторон. Доказательство. Рассмотрим треугольник АВС. Отложим на продолжении стороны АВ отрезок ВD, равный стороне ВС. Треугольник ВDC - равнобедренный. Поэтому 1= 2. Угол 2 составляет часть угла ACD. Следовательно, 2 AC. Но AD=AB+BD=AB+BC. Следовательно, имеем неравенство AB+BC > AC, или AC < AB + BC, означающее, что сторона AC треугольника меньше суммы двух других сторон.

Теорема 2 Длина отрезка, соединяющего концы ломаной, не превосходит длины самой ломаной. Доказательство. Рассмотрим, например, ломаную ABCDE. Заменим соседние стороны AB и BC на отрезок AC. При этом длина ломаной уменьшится или, по крайней мере, не увеличится. Будем и дальше заменять соседние стороны ломаной на отрезки, пока не дойдем до отрезка, соединяющего начало и конец ломаной. При этом каждый раз длина ломаной не будет увеличиваться. Значит, длина отрезка, соединяющего концы ломаной, не превосходит длины всей ломаной.

Упражнение 1 Можно ли построить треугольник со сторонами: а) 13 см, 2 см, 8 см; б) 1 м, 0,5 м, 0,5 м? Ответ: а), б) Нет.

Упражнение 2 Могут ли стороны треугольника относится как: а) 1 : 2 : 3; б) 2 : 3 : 6; в) 1 : 1 : 2? Ответ: а), б), в) Нет.

Упражнение 3 В равнобедренном треугольнике одна сторона равна 25 см, а другая 10 см. Какая из них является основанием? Ответ: 10 см.

Упражнение 4 Найдите сторону равнобедренного треугольника, если две другие стороны равны: а) 6 см и 3 см; б) 8 см и 2 см. Ответ: а) 6 см; б) 8 см.

Упражнение 5 В равнобедренном треугольнике одна сторона равна 12 см, а другая – 5 см. Найдите периметр данного треугольника. Ответ: 29 см.

Упражнение 6 Периметр равнобедренного треугольника равен 20 см. Одна из сторон больше другой в два раза. Найдите длины сторон этого треугольника. Ответ: 4 см, 8 см, 8 см.

Упражнение 7 Периметр равнобедренного треугольника равен 25 см, разность двух сторон равна 4 см, а один из его внешних углов острый. Найдите стороны треугольника. Ответ: 11 см, 7 см, 7 см.

Упражнение 8 В треугольнике ABC AC = 3,8 см, AB = 0,6 см. Длина стороны BC выражается целым числом. Найдите его. Ответ: 4 см.

Упражнение 9 В каких пределах может изменяться периметр p треугольника, если две его стороны равны a и b (a < b)? Ответ: 2a < p < 2(a + b).

Упражнение 10 Ответ: 4 см. Для точек А, В, С, D на плоскости выполняются равенства АВ = 3 см, ВС = 4 см, CD = 5 см и неравенство AC + BD 2 см. Найдите AD.

Упражнение 11 Пусть ABC – треугольник, D – точка на стороне BC. На прямой AB найдите такую точку E, для которой разность CE – DE наибольшая. Ответ: Вершина B.

Упражнение 12 Внутри выпуклого четырехугольника ABCD найдите точку O, сумма расстояний от которой до вершин четырехугольника наименьшая. Ответ: Точка пересечения диагоналей. Для любой другой точки O сумма расстояний от нее до вершин будет больше.

Упражнение 13 Ответ: 12 см. В равнобедренном треугольнике ABC через середину боковой стороны BC = 8 см проведен перпендикуляр, пересекающий основание в точке D, которая соединена с вершиной B. Найдите основание AC данного треугольника, если периметр треугольника ABD равен 20 см.

Упражнение 14 Ответ: 7 см. В равнобедренном треугольнике ABC через середину боковой стороны BC=14 см проведен перпендикуляр, пересекающий другую боковую сторону AC в точке D, которая соединена с вершиной B. Найдите основание AB, если периметр треугольника ABD равен 21 см.

Упражнение 15 Ответ: а) 8, 2; б) 8, 5; в) 8, 1. На рисунке изображены стержни, соединенные шарнирами, которые могут свободно двигаться. Для каждой конструкции найдите наибольшее и наименьшее расстояния, на которые можно раздвинуть концы A и B.