Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.

Презентация:



Advertisements
Похожие презентации
Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
Advertisements

ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
Геометрические места точек Геометрическим местом точек (ГМТ) называется фигура, состоящая из всех точек, удовлетворяющих заданному свойству или нескольким.
Геометрические места точек Геометрическим местом точек (ГМТ) называется фигура, состоящая из всех точек, удовлетворяющих заданному свойству или нескольким.
1.1. Точка, делящая отрезок пополам, называется ______.
1 Треугольник, периметр которого равен 24 см, делится высотой на два треугольника, периметры которых равны 12 см и 20 см. Найти высоту треугольника.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ И ПЛОСКОСТИ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на.
Средняя линия треугольника Урок 1. I. Устная работа 1) Может ли треугольник быть невыпуклым? 2) Где расположена точка пересечения высот прямоугольного.
Перпендикуляр и наклонная Урок геометрии в 10 классе.
Перпендикуляр и наклонная. Теорема: Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна.
Урок 1 Угол между прямой и плоскостью. Углом между прямой, не перпендикулярной плоскости и плоскостью называется угол между этой прямой и ее проекцией.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
Презентация к уроку по геометрии (8 класс) на тему: Презентация к уроку "Решение задач по теме "Теорема Пифагора". Геометрия 8 класс
Построим прямую а и произвольную точку В, не лежащую на прямой а. а. В Построим ВА – перпендикуляр, опущенный из точки В на прямую а. А С К Е Проведем.
Г.А. Астанкова Г.А. Астанкова МОУ «Ремзаводская сош» МОУ «Ремзаводская сош» с. Павловск с. Павловск.
Соотношения между сторонами и углами треугольника.
Прямоугольные треугольники Треугольник называется прямоугольным, если … у него есть прямой угол. Гипотенузой называется сторона прямоугольного треугольника…
Прямоугольные треугольники Треугольник называется прямоугольным, если … у него есть прямой угол. Гипотенузой называется сторона прямоугольного треугольника…
Транксрипт:

Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой a. Точка B называется основанием перпендикуляра. Длина перпендикуляра AB называется расстоянием от точки A до прямой a.

Наклонные Для произвольной точки C прямой a, отличной от основания перпендикуляра B, отрезок AC называется наклонной, проведенной из точки A к прямой a. Точка C называетсяоснованием наклонной. Отрезок BC называетсяпроекцией наклонной.

Теорема Перпендикуляр, опущенный из данной точки на данную прямую, короче всякой наклонной, проведенной из этой точки к этой прямой. Иначе говоря, расстояние от точки до прямой является наименьшим из расстояний от этой точки до точек данной прямой.

Вопрос 1 Что называется перпендикуляром, опущенным из данной точки на данную прямую? Ответ: Перпендикуляром, опущенным из данной точки A на данную прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой a.

Вопрос 2 Что называется наклонной, проведенной из данной точки к данной прямой? Ответ: Наклонной, проведенной из точки A к прямой a, называется отрезок AC, соединяющей точку A с произвольной точкой C прямой a, отличной от основания перпендикуляра B.

Вопрос 3 Что называется расстоянием от точки до прямой? Ответ: Длина перпендикуляра, опущенного из данной точки на данную прямую.

Вопрос 4 Что больше, перпендикуляр или наклонная, проведенные из одной точки к данной прямой? Ответ: Наклонная.

Упражнение 1 Сколько перпендикуляров можно опустить из данной точки на данную прямую. Ответ: Один.

Упражнение 2 Сколько наклонных можно провести из данной точки к данной прямой. Ответ: Бесконечно много.

Упражнение 3 Длина какого отрезка является расстоянием от вершины треугольника до его противоположной стороны? Ответ: Высоты.

Упражнение 4 Могут ли неравные наклонные, проведенные из одной точки к одной прямой, иметь равные проекции? Ответ: Нет.

Упражнение 5 Могут ли равные наклонные, проведенные из одной точки к одной прямой, иметь неравные проекции? Ответ: Нет.

Упражнение 6 Чему равна проекция одной стороны равностороннего треугольника на прямую, содержащую другую его сторону? Ответ: Половине стороны треугольника.

Упражнение 7 Чему равна проекция гипотенузы прямоугольного треугольника на его на прямую, содержащую его катет? Ответ: Этому катету.

Упражнение 8 Чему равна проекция боковой стороны равнобедренного треугольника на его основание Ответ: Половине основания.

Упражнение 9 Гипотенуза AB прямоугольного равнобедренного треугольника ABC равна 6 см. Найдите расстояние от вершины C до прямой, содержащей эту гипотенузу. Ответ: 3 см.

Упражнение 10 Катеты AC и BC прямоугольного треугольника ABC равны 5 см. На гипотенузе AB взята точка D. Найдите сумму расстояний от этой точки до прямых, содержащих катеты этого треугольника. Ответ: 5 см.

Упражнение 11 Катеты AC и BC прямоугольного треугольника ABC равны 3 см и 4 см. На гипотенузе AB взята точка D. В каких пределах находится сумма S расстояний от этой точки до прямых, содержащих катеты этого треугольника. Ответ: 3 см < S < 4 см.

Задача Герона Задача. Дана прямая с и две точки А и В на плоскости. Найдите такую точку С на этой прямой, чтобы сумма расстояний АС + СВ была наименьшей. Решение. В случае, если точки A и B лежат по разные стороны от прямой c, то искомой точкой C является точка пересечения отрезка AB и прямой c. Действительно, для любой другой точки C прямой c имеем: AC+CB >AC + CB. Если точки A и B лежат по одну сторону от прямой c, то для нахождения искомой точки C заменим точку B на точку B', симметричную B относительно прямой c. Тогда BC=BC и этот случай сводится к предыдущему.

Упражнение 12 Задача. Точки A и B расположены по одну сторону и на одинаковом расстоянии от прямой c. Где на прямой c расположена точка C, для которой сумма расстояний AC + CB наименьшая? Ответ. Искомой точкой C является середина отрезка GH.

Упражнение 13 Дана прямая с и две точки А и В по одну сторону от нее. Точка С на прямой c обладает тем свойством, что сумма расстояний АС + СВ – наименьшая. Докажите, что угол 1 равен углу 2. Доказательство. Рассмотрим точку B, симметричную точке B относительно прямой c. Углы 1 и 3 равны, как вертикальные. Углы 2 и 3 равны, как соответственные углы в равных треугольниках BCH и BCH. Следовательно, угол 1 равен углу 3.

Отражение света Известно, что луч света распространяется по кратчайшему пути. Поэтому, если луч света исходит из точки A, отражается от прямой c и приходит в точку B, то точка C, найденная в задаче Герона, будет точкой отражения и, таким образом, имеет место закон отражения света: угол падения светового луча равен углу отражения.