Упражнение 1 На клетчатой бумаге постройте несколько точек, равноудаленных от данной точки F и данной прямой d. Соедините их плавной кривой.

Презентация:



Advertisements
Похожие презентации
Упражнение 1 На клетчатой бумаге постройте несколько точек, равноудаленных от данной точки F и данной прямой d. Соедините их плавной кривой.
Advertisements

Упражнение 1 На клетчатой бумаге постройте несколько точек, расположенных в узлах сетки, сумма расстояний от которых до точек F 1 и F 2 равна 8 (стороны.
Упражнение 1 На клетчатой бумаге постройте несколько точек, расположенных в узлах сетки, модуль разности расстояний от которых до точек F 1 и F 2 равен.
Упражнение 1 На клетчатой бумаге постройте несколько точек, расположенных в узлах сетки, модуль разности расстояний от которых до точек F 1 и F 2 равен.
Упражнение 1 На клетчатой бумаге постройте несколько точек, расположенных в узлах сетки, сумма расстояний от которых до точек F 1 и F 2 равна 6 (стороны.
Презентация на тему: Парабола и ее свойства Выполнил: Ученик 10 б класса Гречкин Ярослав Учитель Шамсутдинова Р.Р. Школа
Работу выполнила Ученица 10 «Б» класса Шамсутдинова Ляйсан Учитель Шамсутдинова Р.Р. Школа г.
Выполнила: Ученица 9-Б класса Галимова Диана. от.греч. παραβολή приложение) геометрическое место точек, равноудалённых от данной прямой (называемой директрисой.
Геометрические места точек Геометрическим местом точек (ГМТ) называется фигура, состоящая из всех точек, удовлетворяющих заданному свойству или нескольким.
Определение Общим перпендикуляром двух скрещивающихся прямых называется отрезок с концами на этих прямых, являющийся перпендикуляром к каждой их них.
Расстояние от точки до прямой. Расстояние между параллельными прямыми. Урок 51 По данной теме урок 12 Классная работа
КОНИЧЕСКИЕ СЕЧЕНИЯ Для данного конуса рассмотрим коническую поверхность, образованную прямыми, проходящими через вершину конуса и точки окружности основания.
Геометрические места точек Геометрическим местом точек (ГМТ) называется фигура, состоящая из всех точек, удовлетворяющих заданному свойству или нескольким.
3. Парабола Пусть – некоторая прямая на плоскости, F – некоторая точка плоскости, не лежащая на прямой. ОПРЕДЕЛЕНИЕ. Параболой называется геометрическое.
Окружность – множество точек плоскости, равноудаленных от данной точки.
Окружность. Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки, называемой.
Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
§ 5. Кривые второго порядка Кривые второго порядка делятся на 1) вырожденные и 2) невырожденные Вырожденные кривые второго порядка это прямые и точки,
Параболические многоугольники. Теорема 1. Параболический четырёхугольник описан вокруг окружности тогда и только тогда, когда его диагонали перпендикулярны.
Презентация к уроку геометрии в 7 классе На тему: Геометрическое место точек.
Транксрипт:

Упражнение 1 На клетчатой бумаге постройте несколько точек, равноудаленных от данной точки F и данной прямой d. Соедините их плавной кривой.

Определение параболы Пусть на плоскости задана прямая d и точка F, не принадлежащая этой прямой. Геометрическое место точек, равноудаленных от прямой d и точки F, называется параболой. Прямая d называется директрисой, а точка F - фокусом параболы.

Упражнение 2 Нарисуйте ГМТ A, для которых расстояние до фокуса меньше расстояния до директрисы. Ответ: Точки A, расположенные выше параболы.

Упражнение 3 Нарисуйте ГМТ A, для которых расстояние до фокуса больше расстояния до директрисы. Ответ: Точки A, расположенные ниже параболы.

Рисуем параболу Параболу можно нарисовать с помощью линейки, угольника, кнопок, нитки и карандаша.

Касательная к параболе Прямая, имеющая с параболой только одну общую точку и не перпендикулярная ее директрисе, называется касательной к параболе. Общая точка называется точкой касания. Теорема. Пусть A – точка на параболе с фокусом F и директрисой d, АD – перпендикуляр, опущенный на директрису. Тогда касательной к параболе, проходящей через точку A, будет прямая, содержащая биссектрису угла FAD. Проведите доказательство теоремы, используя рисунок.

Фокальное свойство параболы Если источник света поместить в фокус параболы, то лучи, отразившись от параболы, пойдут в одном направлении, перпендикулярном директрисе. Фокальное свойство параболы используется при изготовлении отражающих поверхностей прожекторов, автомобильных фар, карманных фонариков, телескопов, параболических антенн и т.д.

Построение касательной По данному рисунку укажите способ построения касательной к параболе, заданной фокусом F и директрисой d, проходящей через точку C, с помощью циркуля и линейки.

Упражнение 4 Сколько касательных можно провести к параболе из точки: а) принадлежащей параболе; б) лежащей ниже параболы; в) лежащей выше параболы? Ответ: а) Одну; б) две; в) ни одной.

Упражнение 5 Что будет происходить с параболой, если фокус: а) удаляется от директрисы; б) приближается к директрисе? Ответ: а) Ветви параболы разжимаются; б) ветви параболы сжимаются.

Упражнение 6 Найдите геометрическое место точек, из которых парабола видна под прямым углом. Ответ: Все точки C директрисы.

Упражнение 7 Найдите геометрическое место точек, из которых парабола видна: а) под тупым углом; б) под острым углом. Ответ: а) Все точки C, лежащие ниже параболы и выше директрисы. б) Все точки C, лежащие ниже директрисы.