Вершины, ребра и грани Рассмотрим известные нам многогранники и заполним следующую таблицу, в которой В – число вершин, Р – число ребер, Г – число граней.

Презентация:



Advertisements
Похожие презентации
Вершины, ребра и грани Рассмотрим известные нам многогранники и заполним следующую таблицу, в которой В – число вершин, Р – число ребер, Г – число граней.
Advertisements

Понятие многогранника. Элементы многогранника грани рёбра вершины диагонали многогранника диагонали грани плоский угол при вершине двугранный угол при.
Задача Эйлера То, что не получилось на рисунке, не является доказательством невозможности соединения дорожками домиков и колодцев. Для доказательства воспользуемся.
Задача Эйлера То, что не получилось на рисунке, не является доказательством невозможности соединения дорожками домиков и колодцев. Для доказательства воспользуемся.
многогранником Поверхность, составленную из многоугольников и ограничивающую некоторое геометрическое тело, будем называть многогранной.
Теорема Эйлера В - чис-ло вершин, Р ребер и Г - граней данного многогранника: Название многогранникаВРГ Треугольная пирамида 464 Четырехугольная пирамида.
Правильные многогранники. Определение Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в каждой его.
ВЫПУКЛЫЕ МНОГОГРАННИКИ Многогранник называется выпуклым, если он является выпуклой фигурой, т. е. вместе с любыми двумя своими точками целиком содержит.
ВЫПУКЛЫЕ МНОГОГРАННЫЕ УГЛЫ Многогранный угол называется выпуклым, если он является выпуклой фигурой, т. е. вместе с любыми двумя своими точками целиком.
АВТОР: Землянникова С.В.. Многоугольники, из которых составлен многогранник, называются его гранями. Стороны граней называются ребрами многогранника.
Поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело.
Классификация и свойства правильных многогранников
МНОГОГРАННИКИ Многогранником называется тело, поверхность которого состоит из конечного числа многоугольников, называемых гранями многогранника. Стороны.
МНОГОГРАННИКИ Многогранником называется тело, поверхность которого состоит из конечного числа многоугольников, называемых гранями многогранника. Стороны.
ГОУ Гимназия 261 Кировского района Санкт- Петербурга Федорчук Оксана Федоровна, учитель математики Мальчевская Екатерина (10 класс) Николаева Елизавета.
МБОУ лицей 10 города Советска Калининградской области учитель математики Разыграева Татьяна Николаевна.
Существует пять видов правильных многогранников: тетраэдр, гексаэдр (куб), октаэдр, додекаэдр, икосаэдр.
Велик ли мир правильных многогранников? Ученицы 11 класс Ивановой Виктории.
Теорема Эйлера и следствие из неё Теорема Эйлера говорит о соотношении между количеством вершин, ребер и граней многогранника. Она впервые появилась в.
М НОГОГРАННИКИ. О ПРЕДЕЛЕНИЕ МНОГОГРАННИКА : Многогранник – это поверхность составленная из многоугольников, ограничивающая некоторое геометрическое тело.
Транксрипт:

Вершины, ребра и грани Рассмотрим известные нам многогранники и заполним следующую таблицу, в которой В – число вершин, Р – число ребер, Г – число граней многогранника. Название многогранника ВРГ Треугольная пирамида Четырехугольная пирамида Треугольная призма Четырехугольная призма n-угольная пирамида n-угольная призма n+12n2n 2n2n3n3nn+2

ТЕОРЕМА ЭЙЛЕРА Из приведенной таблицы непосредственно видно, что для всех выбранных многогранников имеет место равенство В - Р + Г = 2. Оказывается, что это равенство справедливо не только для рассмотренных многогранников, но и для произвольного выпуклого многогранника. Впервые это свойство выпуклых многогранников было доказано Леонардом Эйлером в 1752 году и получило название теоремы Эйлера. Теорема Эйлера. Для любого выпуклого многогранника имеет место равенство В - Р + Г = 2, где В - число вершин, Р - число ребер и Г - число граней данного многогранника.

Задача о трех домиках и трех колодцах Три соседа имеют три общих колодца. Можно ли провести непересекающиеся дорожки от каждого дома к каждому колодцу? Ответ: Нет.

Упражнение 1 Выполняется ли соотношение Эйлера для невыпуклой призмы? Ответ: Да.

Упражнение 2 Выполняется ли соотношение Эйлера для невыпуклой пирамиды? Ответ: Да.

Упражнение 3 Приведите пример многогранника, для которого не выполняется соотношение Эйлера. Ответ: Например, куб, из которого вырезан прямоугольный параллелепипед.

Упражнение 4 Гранями выпуклого многогранника являются только треугольники. Сколько у него вершин и граней, если он имеет: а) 12 ребер; б) 15 ребер? Ответ: а) В = 6, Г = 8;б) В = 7, Г = 10.

Упражнение 5 Из каждой вершины выпуклого многогранника выходит три ребра. Сколько он имеет вершин и граней, если число ребер равно: а) 12; б) 15? Ответ: а) В = 8, Г = 6;б) В = 10, Г = 7.

Упражнение 6 Гранями выпуклого многогранника являются только четырехугольники. Сколько у него вершин и граней, если число ребер равно 12? Приведите пример такого многогранника. Ответ: В = 8, Г = 6, куб.

Упражнение 7 В каждой вершине выпуклого многогранника сходится по четыре ребра. Сколько он имеет вершин и граней, если число ребер равно 12? Приведите пример такого многогранника. Ответ: В = 6, Г = 8, октаэдр.

Упражнение 8 Чему равна эйлерова характеристика многогранника (В – Р + Г, где В – число вершин, Р – рёбер и Г – граней многогранника), представленного на рисунке? Ответ: 0.

Упражнение 9 Как изменится число вершин, рёбер и граней выпуклого многогранника, если к одной из его граней пристроить пирамиду? Изменится ли В – Р + Г? Ответ: Пусть пристроена n-угольная пирамида, тогда количество вершин станет (В+1), рёбер - (Р+n), граней - (Г+n). В – Р + Г не изменится.

Упражнение 10 Как изменится число вершин, рёбер и граней выпуклого многогранника, если от него отсечь один из многогранных углов? Изменится ли В – Р + Г? Ответ: Пусть отсекли m-гранный угол, тогда количество вершин будет (В+m-1), рёбер - (Р+m), граней - (Г+1). В – Р + Г не изменится.