ПЛОЩАДЬ ПОВЕРХНОСТИ Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Площадь поверхности.

Презентация:



Advertisements
Похожие презентации
ПЛОЩАДЬ ПОВЕРХНОСТИ Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Площадь поверхности.
Advertisements

ПЛОЩАДЬ ПОВЕРХНОСТИ МНОГОГРАННИКА Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников.
Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Объем параллелепипеда равен 6. Найдите площадь его поверхности. Задача.
Сфера, вписанная в цилиндр Сфера называется вписанной в цилиндр, если она касается его оснований и боковой поверхности (касается каждой образующей). При.
Сфера, вписанная в цилиндр Сфера называется вписанной в цилиндр, если она касается его оснований и боковой поверхности (касается каждой образующей). При.
Решение задний В Площадь поверхности куба равна 18. Найдите его диагональ А В С D A1A1 B1B1 C1C1 D1D1 Пусть ребро куба равно а.
Задание Чему равна площадь поверхности куба с ребром 1? Ответ: 6.
ОБЪЕМ ФИГУР В ПРОСТРАНСТВЕ Объем – величина, аналогичная площади и сопоставляющая фигурам в пространстве неотрицательные действительные числа. За единицу.
Отрезок AB длины 1 вращается вокруг прямой c, параллельной этому отрезку и отстоящей от него на расстояние, равное 2. Найдите площадь поверхности вращения.
Материал для подготовки к ЕГЭ (ГИА) по алгебре (11 класс) по теме: Презентация для подготовки к ЕГЭ по математике В 10
1 Задания В 9 ЕГЭ Диагональ куба равна Найдите его объем 2 Ответ: 8 Решение Если ребро куба равно a, то его диагональ равна. Отсюда следует,
Математический диктант Цилиндр. Конус.. Вопрос 1 Вариант 1 Вариант 2 Какая фигура получается в сечении цилиндра плоскостью, проходящей через ось цилиндра?
ПЛОЩАДЬ ПОВЕРХНОСТИ ШАРА Площадь поверхности шара, радиуса R, выражается формулой.
Задачи В10 и В13. Найдите объём многогранника, изображённого на рисунке (все двугранные углы многогранника прямые). Найдите объем пространственного креста,
Диктант Призма. Найдите площадь полной поверхности, объем (таблица) 1.Прямая призма 2.Наклонная призма 3.Прямоугольный параллелепипед 4.Пирамида 5.Цилиндр.
ОБЪЕМ ПИРАМИДЫ Теорема. Объем пирамиды равен одной третьей произведения площади ее основания на высоту. Доказательство. Рассмотрим случай треугольной пирамиды.
ПЛОЩАДЬ ПОВЕРХНОСТИ ШАРА Площадь поверхности шара, радиуса R, выражается формулой.
Сфера, вписанная в цилиндр Сфера называется вписанной в цилиндр, если она касается его оснований и боковой поверхности (касается каждой образующей). При.
Гнусова Марина Александровна.. РАЗНЫЕ ЗАДАЧИ НА МНОГОГРАННИКИ, ЦИЛИНДР, КОНУС И ШАР. 11 класс Гнусова Марина Александровна учитель математики МКОУ СОШ.
ОБЪЕМ ШАРА Теорема. Объем шара радиуса R выражается формулой.
Транксрипт:

ПЛОЩАДЬ ПОВЕРХНОСТИ Площадью поверхности многогранника по определению считается сумма площадей, входящих в эту поверхность многоугольников. Площадь поверхности призмы состоит из площади боковой поверхности и площадей оснований. Площадь поверхности пирамиды состоит из площади боковой поверхности и площади основания.

ПЛОЩАДЬ ПОВЕРХНОСТИ ЦИЛИНДРА Теорема. Площадь поверхности цилиндра, радиус основания которого равен R и образующая равна b, выражается формулой

ПЛОЩАДЬ ПОВЕРХНОСТИ КОНУСА Теорема. Площадь поверхности конуса, радиус основания которого равен R и образующая равна b, выражается формулой

Упражнение 1 Чему равна площадь поверхности куба с ребром 1? Ответ: 6.

Упражнение 2 Объем куба равен 8 м 3. Найдите площадь его поверхности. Ответ: 24 м 2.

Упражнение 3 Как изменится площадь поверхности куба, если каждое его ребро увеличить в: а) 2 раза; б) 3 раза; в) n раз? Ответ: Увеличится в: а) 4 раза; б) 9 раз; в) n 2 раз.

Упражнение 4 Чему равна площадь поверхности: а) тетраэдра; б) октаэдра; в) икосаэдра с ребром 1? Ответ: а) б)в)

Упражнение 5 Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5 см, а высота 10 см. Ответ: 300 см 2.

Упражнение 6 Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 см и 4 см, высота призмы равна 10 см. Найдите площадь поверхности данной призмы. Ответ: 132 см 2.

Упражнение 7 Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями 6 см и 8 см и боковым ребром 10 см. Ответ: 248 см 2.

Упражнение 8 Найдите площадь боковой поверхности правильной: а) четырёхугольной пирамиды, сторона основания которой равна 6 см и высота 4 см; б) треугольной пирамиды со стороной основания 6 см и высотой 1 см; в) шестиугольной пирамиды со стороной основания 4 см и высотой 2 см. Ответ: а) 60 см 2 ; б) 18 см 2 ; в) 48 см 2.

Упражнение 9 Как изменятся площади боковой и полной поверхностей пирамиды, если все её рёбра: а) увеличить в 2 раза; б) уменьшить в 5 раз? Ответ: а) Увеличатся в 4 раза; б) уменьшатся в 25 раз.

Упражнение 10 Развёртка поверхности правильной треугольной пирамиды представляет собой равносторонний треугольник, площадь которого равна 80 см 2. Найдите площадь грани пирамиды. Ответ: 20 см 2.

Упражнение 11 Радиус основания цилиндра равен 2 м, высота - 3 м. Найдите площадь боковой поверхности цилиндра. Ответ: м 2.

Упражнение 12 Площадь осевого сечения цилиндра равна 4 м 2. Найдите площадь боковой поверхности цилиндра. Ответ: м 2.

Упражнение 13 Осевое сечение цилиндра - квадрат. Площадь основания равна 1. Найдите площадь поверхности цилиндра. Ответ: 6.

Упражнение 14 Площадь боковой поверхности и объем цилиндра выражаются одним и тем же числом. Найдите диаметр основания цилиндра. Ответ: 4.

Упражнение 15 Два цилиндра образованы вращением одного и того же прямоугольника вокруг его неравных сторон. Равны ли у этих цилиндров площади: а) боковых; б) полных поверхностей? Ответ: а) Да; б) нет.

Упражнение 16 Радиус основания конуса равен 3 м, высота - 4 м. Найдите площадь поверхности конуса. Ответ: м 2.

Упражнение 17 Площадь боковой поверхности конуса в два раза больше площади основания. Найдите угол между образующей конуса и плоскостью основания. Ответ: 60 о.

Упражнение 18 Образующая конуса равна 4 дм, а угол при вершине осевого сечения равен 90 о. Вычислите площадь боковой поверхности конуса. Ответ: дм 2.

Упражнение 19 Два конуса образованы вращением одного и того же прямоугольного треугольника вокруг его неравных катетов. Равны ли у этих конусов площади: а) боковых; б) полных поверхностей? Ответ: а), б) Нет.

Упражнение 20 Найдите площадь боковой поверхности усеченного конуса, если радиусы его оснований равны R и r, а образующая равна b. Ответ: