КООРДИНАТЫ ВЕКТОРА Отложим вектор так, чтобы его начало совпало с началом координат. Тогда координаты его конца называются координатами вектора. Обозначим,,

Презентация:



Advertisements
Похожие презентации
Координаты вектора Пусть на плоскости задана прямоугольная система координат. Определим понятие координат вектора. Для этого отложим вектор так, чтобы.
Advertisements

Презентация к уроку по геометрии (9 класс) по теме: Презентация "Координаты вектора"
Прямоугольная система координат Прямоугольной системой координат в пространстве называется тройка взаимно перпендикулярных координатных прямых с общим.
ВЕКТОРА В ПРОСТРАНСТВЕ ГЕОМЕТРИЯ 11 КЛАСС. Система координат в пространстве Если через точку пространства проведены три попарно перпендикулярные прямые,
Метод координат в пространстве Система координат Оси координат Коорд. плоскости Единичные векторы Координаты вектора Сумма векторов Разность векторов Умножение.
Уравнение прямой Теорема. Прямая на плоскости задается уравнением ax + by + c = 0, где a, b, c - некоторые числа, причем a, b одновременно не равны нулю.
Прямоугольная система координат Прямоугольной системой координат в пространстве называется тройка взаимно перпендикулярных координатных прямых с общим.
Метод координат в пространстве Координаты точки и координаты вектора.
СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ Скалярным произведением двух ненулевых векторов называется произведение их длин на косинус угла между ними. Если хотя бы.
Расстояние между точками Теорема. Расстояние между точками A 1 (x 1, y 1, z 1 ), A 2 (x 2, y 2, z 2 ) в пространстве выражается формулой.
Тема 8. «Векторы на плоскости и в пространстве» Основные понятия: 1.Определение вектора, основные определения и линейные операции над векторами 2.Скалярное.
СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ Угол между векторами пространстве определяется аналогично тому, как это делалось для векторов на плоскости. А именно, угол.
Метод координат.. Координаты середины отрезка. Дано: А(x1;y1) B(x2;y2) C–середина АВ. Выразить: C (х; y), через А и В. Доказательство: Т.к. С – середина.
Уравнение прямой Теорема. Прямая на плоскости задается уравнением ax + by + c = 0, где a, b, c - некоторые числа, причем a, b одновременно не равны нулю.
Координатная прямая Координатной прямой, или координатной осью называется прямая, на которой выбраны точка O, называемая началом координат, и единичный.
Координатный метод Геометрия Подготовила Глазкрицкая Светлана Геннадьевна.
Урок 1 Прямоугольная система координат. II. Устная работа 1) Какая фигура называется геометрическим местом точек (ГМТ)? 2) Что означают слова «фигура.
Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического.
Уравнение плоскости Теорема. Плоскость в пространстве задается уравнением где a, b, c, d - действительные числа, причем a, b, c одновременно не равны нулю.
Геометрия глава 10 Подготовила Голкова Анна 9 класс СПб лицей 488 ( учитель Курышова Н.Е. )
Транксрипт:

КООРДИНАТЫ ВЕКТОРА Отложим вектор так, чтобы его начало совпало с началом координат. Тогда координаты его конца называются координатами вектора. Обозначим,, векторы с координатами (1, 0, 0), (0, 1, 0), (0, 0, 1) соответственно. Их длины равны единице, а направления совпадают с направлениями соответствующих осей координат. Будем изображать эти векторы, отложенными от начала координат и называть их координатными векторами.

КООРДИНАТЫ ВЕКТОРА Теорема. Вектор имеет координаты (x, y, z) тогда и только тогда, когда он представим в виде Доказательство. Отложим вектор от начала координат и его конец обозначим через А. Имеет место равенство Точка А имеет координаты (x, y, z) тогда и только тогда, когда выполняются равенства и, значит,

ДЛИНА ВЕКТОРА Если вектор задан координатами начальной и конечной точек, A 1 (x 1, y 1, z 1 ), A 2 (x 2, y 2, z 2 ), то его длина выражается формулой

Упражнение 1 Найдите координаты векторов: а) б) в) г) Ответ: а) (-2, 6, 1);б) (1, 3, 0);в) (0, -3, 2);г) (-5, 0, 5).

Упражнение 2 Найдите координаты вектора, если: a) A(2, -6, 9), B(-5, 3, - 7); б) A(1, 3, -8), B(6, -5, -10); в) A(-3, 1, -20), B(5, 1, -1). Ответ: а) (-7, 9, -16);б) (5, -8, -2);в) (8, 0, 19).

Упражнение 3 Вектор имеет координаты (a,b,c). Найдите координаты вектора. Ответ: (-a, -b, -c).

Упражнение 4 В прямоугольном параллелепипеде OABCO 1 A 1 B 1 C 1 вершина O – начало координат, ребра OA, OC, OO 1 лежат на осях координат Ox, Oy и Oz соответственно и OA=2, OC=3, OO 1 =4. Найдите координаты векторов,,,. Ответ: (2, 0, 4); (2, 3, 4); (0, 0, 4); (0, 3, 0).

Упражнение 5 На рисунке изображен прямоугольный параллелепипед OABCO 1 A 1 B 1 C 1, у которого вершина O совпадает с началом координат. Найдите координаты вектора: а) ; б) ; в) ; г) ; д) ; е) ; ж) ; з) ; и). Ответ: а) (0, 8, 0); б) (-5, 0, 0); в) (-5, 8, 0); г) (0, 0, 6); д) (0, -8, 6); е) (0, -8, 0); ж) (0, 0, 6); з) (-5, 8, 6); и) (-5, 8, -6).

Упражнение 6 Найдите координаты векторов и, если (1, 0, 2), (0,3,-4). Ответ: (1, 3, -2); (1, -3, 6).

Упражнение 7 Даны векторы (-1,2,8) и (2,-4,3). Найдите координаты векторов: а) ; б) ; в). Ответ: а) (1, -2, 30); б) (-1, 2, ); в) (11, -22, 7).

Упражнение 8 Найдите координаты точки N, если вектор имеет координаты (4, -3, 0) и точка M - (1, -3, -7). Ответ: (5, -6, -7).

Упражнение 9 Какому условию должны удовлетворять координаты вектора, чтобы он был: а) перпендикулярен координатной плоскости Oxy; б) параллелен координатной прямой Ox? Ответ: а) Первая и вторая координаты равны нулю; б) вторая и третья координаты равны нулю.

Упражнение 10 Найдите координаты конца единичного вектора с началом в точке A(1, 2, 3) и: а) перпендикулярного плоскости Oxy; б) параллельного прямой Ox. Ответ: а) (1,2,4), (1,2,2); б) (2,2,3), (0,2,3).

Упражнение 11 Найдите длину вектора: а) б) в) Ответ: а)б)в)