Уравнение плоскости в пространстве Теорема. Плоскость в пространстве задается уравнением где a, b, c, d - действительные числа, причем a, b, c одновременно.

Презентация:



Advertisements
Похожие презентации
Уравнение плоскости Теорема. Плоскость в пространстве задается уравнением где a, b, c, d - действительные числа, причем a, b, c одновременно не равны нулю.
Advertisements

Уравнение прямой Теорема. Прямая на плоскости задается уравнением ax + by + c = 0, где a, b, c - некоторые числа, причем a, b одновременно не равны нулю.
Уравнение прямой Теорема. Прямая на плоскости задается уравнением ax + by + c = 0, где a, b, c - некоторые числа, причем a, b одновременно не равны нулю.
Расстояние между точками Теорема. Расстояние между точками A 1 (x 1, y 1, z 1 ), A 2 (x 2, y 2, z 2 ) в пространстве выражается формулой.
Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического.
3. Взаимное расположение прямых на плоскости На плоскости две прямые могут: а) быть параллельны, б) пересекаться. Пусть уравнения прямых 1 и 2 имеют вид:
Прямоугольная система координат Прямоугольной системой координат в пространстве называется тройка взаимно перпендикулярных координатных прямых с общим.
§ 3. Плоскость 1. Общее уравнение плоскости и его исследование ЗАДАЧА 1. Записать уравнение плоскости, проходящей через точку M 0 (x 0 ;y 0 ;z 0 ), перпендикулярно.
Линейная алгебра и аналитическая геометрия Лектор Ефремова О.Н г. Тема: Плоскость.
Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического.
Прямоугольная система координат Прямоугольной системой координат в пространстве называется тройка взаимно перпендикулярных координатных прямых с общим.
Аналитическая геометрия Аналитическая геометрия – раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности второго.
3. Взаимное расположение прямых в пространстве В пространстве две прямые могут: а) быть параллельны, б) пересекаться, в) скрещиваться. Пусть прямые 1 и.
§ 4. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных.
Аналитическое задание многогранников Неравенства ax + by + cz + d 0 и ax + by + cz + d 0 определяют полупространства, на которые плоскость, заданная уравнением.
ПРЯМАЯ НА ПЛОСКОСТИ. Уравнение линии на плоскости. Определение. Уравнением линии называется соотношение y = f(x) между координатами точек, составляющих.
Координатная прямая Координатной прямой, или координатной осью называется прямая, на которой выбраны точка O, называемая началом координат, и единичный.
Глава III. Аналитическая геометрия Аналитическая геометрия – раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности.
Урок1 Прямая на плоскости.. Виды уравнений прямой на плоскости. Прямая на плоскости может быть задана одним из следующих ниже уравнений. 1. Прямая на.
Прямая на плоскости Общее уравнение прямой Уравнение прямой в отрезках Каноническое уравнение прямой Уравнение прямой с угловым коэффициентом Угол между.
Транксрипт:

Уравнение плоскости в пространстве Теорема. Плоскость в пространстве задается уравнением где a, b, c, d - действительные числа, причем a, b, c одновременно не равны нулю и составляют координаты вектора, перпендикулярного этой плоскости и называемого вектором нормали. ax + by + cz + d = 0, Угол между двумя пересекающимися плоскостями, заданными уравнениями a 1 x + b 1 y + c 1 z + d 1 = 0, a 2 x + b 2 y + c 2 z + d 2 = 0 можно найти, используя формулу

Упражнение 1 Дана плоскость: а) 5x-y-1=0; б) 3x+18z-6=0; в) 15x+y- 8z+14=0; г) x-3y+15z=0. Назовите координаты вектора нормали. Ответ: а) (5, -1, 0);б) (3, 0, 18);в) (15, 1, -8);г) (1, -3, 15).

Упражнение 2 Найдите уравнение плоскости, проходящей через точку M(-1, 2, 1), с вектором нормали, имеющим координаты: а) (0, -5, 2); б) (6, -1, 3); в) (-4, -2, -1); г) (-3, -8, 0). Ответ: а) -5y+2z+8=0; б) 6x-y+3z+5=0; в) -4x-2y-z+1=0; г) -3x-8y+13=0.

Упражнение 3 В каком случае два уравнения a 1 x + b 1 y + c 1 z + d 1 = 0, a 2 x + b 2 y + c 2 z + d 2 = 0 задают: а) одну плоскость; б) две параллельные плоскости? Ответ: а) Если для некоторого числа t выполняются равенства a 2 =ta 1, b 2 =tb 1, c 2 =tc 1, d 2 =td 1 ; б) Если для некоторого числа t выполняются равенства a 2 =ta 1, b 2 =tb 1, c 2 =tc 1 и неравенство d 2 td 1 ;

Упражнение 4 В каком случае две плоскости, заданными уравнениями a 1 x + b 1 y + c 1 z + d 1 = 0, a 2 x + b 2 y + c 2 z + d 2 = 0, перпендикулярны? Ответ: Если выполняется равенство a 1 a 2 + b 1 b 2 + c 1 c 2 =0.

Упражнение 5 Найдите уравнения координатных плоскостей Oxy, Oxz, Oyz. Ответ: z = 0, y = 0, x = 0.

Упражнение 6 Дана плоскость x + 2y - 3z – 1 = 0. Найдите ее точки пересечения с осями координат. Ответ: x = 1,

Упражнение 7 Точка H(-2, 4, -1) является основанием перпендикуляра, опущенного из начала координат на плоскость. Напишите уравнение этой плоскости. Ответ: 2x-4y+z+21=0.

Упражнение 8 Напишите уравнение плоскости, которая: а) проходит через точку M (1,-2,4) и параллельна координатной плоскости Oxz; б) проходит через точку M (0,2,0) и перпендикулярна оси ординат; в) проходит через точки A(3,0,0), B(0,3,0) и параллельна оси аппликат. Ответ: а) y=-2; б) y=2; в) x+y=3.

Упражнение 9 Определите, какие из перечисленных ниже пар плоскостей параллельны между собой: а) x + y + z - 1 = 0, x + y + z + 1 = 0; б) x + y + z - 1 = 0, x + y - z - 1 = 0; в) -7x + y + 2z = 0, 7x - y - 2z - 5 = 0; г) 2x + 4y + 6z - 8 = 0, -x - 2y - 3z + 4 = 0. Ответ: а), в).

Упражнение 10 Как расположены относительно друг друга следующие плоскости: а) 5x-y+7z-8=0 и 5x-2y+14z-16=0; б) x-y+z=0 и -6x+12y- 24z=0; в) 15x+9y-30z+12=0 и -10x-6y+20z-8=0; г) -2x-2y+4z+14=0 и 3x+3y-6z+21=0? Ответ: а) Пересекаются;б) пересекаются; в) совпадают;г) параллельны.

Упражнение 11 Составьте уравнение плоскости, проходящей через точку M(1,3,-1) параллельно плоскости: а) 3x + y – z + 5 = 0; б) x – y + 5z – 4 = 0. Ответ: а) 3x+y-z-7=0;б) x-y+5z+7=0.

Упражнение 12 Перпендикулярны ли плоскости: а) 2x - 5y + z + 4 = 0 и 3x + 2y + 4z – 1 = 0; б) 7x – y + 9 =0 и y + 2z – 3 = 0? Ответ: а) Да;б) нет.

Упражнение 13 Найдите угол φ между плоскостями, заданными уравнениями: а) x + y + z + 1 = 0, x + y - z - 1 = 0; б) 2x + 3y + 6z – 5 = 0, 4x + 4y + 2z - 7 = 0. Ответ: а)б)б)

Упражнение 14 Напишите уравнение плоскости, проходящей через точки: а) A (1,0,0), B (0,1,0) и C (0,0,1); б) M(3,-1,2), N(4,1,-1) и K(2,0,1). Ответ: а) x+y+z–1=0; б) x+4y+3z-5=0.

Упражнение 15 Плоскость задана уравнением ax + by + cz + d = 0. Напишите уравнение плоскости, симметричной данной относительно: а) координатных плоскостей; б) координатных прямых; в) начала координат. Ответ: а) ax+by-cz+d=0, ax-by+cz+d=0, -ax+by+cz+d=0; б) ax-by-cz+d=0, -ax+by-cz+d=0, -ax-by+cz+d=0; в) –ax-by-cz+d=0.

Упражнение 16 Вычислите расстояние от начала координат до плоскости: а) 2x – 2y + z – 6 = 0; б) 2x + 3y – 6z + 14 = 0. Ответ: а) 2;б) 2.

Упражнение 17 Составьте уравнение плоскости, касающейся сферы x 2 + y 2 + z 2 = 9 в точке с координатами: а) (0,3,0); б) (2,-2,1). Ответ: а) y=3;б) 2x-2y+z-9=0.