Две прямые называются скрещивающимися, если они не лежат в одной плоскости. Определение М a b a b
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIi Наглядное представление о скрещивающихся прямых дают две дороги, одна из которых проходит по эстакаде, а другая под эстакадой.
a b a b
Найдите на рисунке параллельные прямые. Назовите параллельные прямые и плоскости. Найдите скрещивающиеся прямые.
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся. Признак скрещивающихся прямых D В АВ СD А C ?
а II b а II b Три случая взаимного расположения двух прямых в пространстве а b а bМa b a b a b
Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна. Теорема о скрещивающихся прямых D С B E A
Задача. Построить плоскость α, проходящую через точку К и параллельную скрещивающимся прямым а и b. Построение: 1.Через точку К провести прямую а 1 || а. 2. Через точку К провести прямую b 1 || b. а b К а1а1 b1b1 3. Через пересекающиеся прямые проведем плоскость α. α – искомая плоскость.
Через вершину А ромба АВСD проведена прямая а, параллельная диагонали ВD, а через вершину С – прямая b, не лежащая в плоскости ромба. Докажите, что: а) а и СD пересекаются; б) а и b скрещивающиеся прямые. В b a b aА C ? abD
А D С В B1B1 С1С1 D1D1 А1А1 Каково взаимное положение прямых 1) AD 1 и МN; 2) AD 1 и ВС 1 ; 3) МN и DC? N M
А D С В B1B1 С1С1 D1D1 А1А1 Докажите, что прямые 1) AD и C 1 D 1 ; 2) A 1 D и D 1 C; 3) AB 1 и D 1 C скрещивающиеся. N M
Задача. α a b М N Дано: a || b MN a = M Определить взаимное расположение прямых MN u b. Скрещивающиеся.
Опрос. А В С D M N P Р1Р1 К Дано: D (АВС), АМ = МD; ВN = ND; CP = PD К ВN. Определить взаимное расположение прямых: а) ND и AB б) РК и ВС в) МN и AB
А В С D M N P К Дано: D (АВС), АМ = МD; ВN = ND; CP = PD К ВN. Определить взаимное расположение прямых: а) ND и AB б) РК и ВС в) МN и AB г) МР и AС д) КN и AС е) МD и BС