x y y x 2 1 4 0 1 0 Если функция возрастает, то производная положительна Если функция убывает, то производная отрицательна.

Презентация:



Advertisements
Похожие презентации
x y y x Если функция возрастает, то производная положительна Если функция убывает, то производная отрицательна.
Advertisements

Липлянская Татьяна Геннадьевна, учитель математики МОБУ «СОШ 3» Г Ясный Оренбургская область.
ЗАДАНИЯ ДЛЯ ПОДГОТОВКИ К ЕГЭ Использование графика производной для определения свойств функции.
f(x) f / (x) x На рисунке изображен график производной функции у =f (x), заданной на промежутке (- 8; 8). Исследуем свойства графика и мы можем ответить.
Задача 8 На рисунке изображен график функции, определенной на интервале. Найдите сумму точек экстремума функции.
Липлянская Татьяна Геннадьевна МОУ «СОШ 3» город Ясный Оренбургская область.
Сухорукова Е.В. МБОУ «Борисовская СОШ 2». Функция y = f(x) определена на промежутке (- 8; 2). На рисунке изображен график ее производной. Найдите точку.
Готовимся к ЕГЭ. f(x) f / (x) x На рисунке изображен график производной функции у =f (x), заданной на промежутке (- 8; 8). Исследуем свойства графика.
3). Исключим точки, в которых производная равна 0 (в этих точках касательная параллельна оси Ох) В8. В8. На.
Геометрический смысл производной Если y = f(x) непрерывна на I, то существует f(x 0 ), где x 0 є I В точке x 0 существует касательная y = kx + b, k = f.
Правильному применению методов можно научиться только применяя их на разнообразных примерах. Цейтен Г. Г.
Подготовка к ЕГЭ 2012 Составил: учитель математики Харитова С.В. МБОУ лицей 10 г.Красноярска.
ЛАБОРАТОРНАЯ РАБОТА 3. Определяем свойства ПРОИЗВОДНОЙ по графику ФУНКЦИИ.
Производная на ЕГЭ (прототипы заданий В 8). 3) Исключим точки, в которых производная равна 0 (в этих точках касательная параллельна оси Ох)
3). Исключим точки, в которых производная равна 0 (в этих точках касательная параллельна оси Ох) В 8. В 8.
Достаточный признак возрастания функции. Если f '( х )>0 в каждой точке интервала I, то функция f возрастает на этом интервале. Достаточный признак убывания.
Кузнецова О.Ф Учитель математики МБОУ СОШ 1. А С В tg A-? tg В -? 4 7 А В С Найдите градусную меру < В. 3 Найдите градусную меру < А. Работа устно. Вычислите.
Методическая разработка Кицис Л.Г. МОУ КСОШ 1 Всеволожского района.
«Применение производной для исследования функции» Урок формирования новых знаний. Лабораторная работа-исследование.
Вопросы к графику производной. 1.Указать количество промежутков возрастания (убывания) функции. 2.Указать Количество точек максимума (минимума). 3.Сколько.
Транксрипт:

x y y x Если функция возрастает, то производная положительна Если функция убывает, то производная отрицательна

- 3; 6 Максимум : - 3; 6 Минимум ; 3 Возрастает : (-9;-3) и (3;6) Убывает : (-3;3)

Находим производную функции Находим критические точки функции Если критических точек на отрезке нет, значит функция на отрезке монотонна, и наибольшего и наименьшего значения функция достигает на концах отрезка Если критических точек на отрезке нет, значит функция на отрезке монотонна, и наибольшего и наименьшего значения функция достигает на концах отрезка Если критические точки на отрезке есть, значит нужно вычислить значения функции во всех критических точках и на концах отрезка, и выбрать из полученных чисел наибольшее и наименьшее

х = 1 ; х = 5/3 f(-1)=18 f(3) = 2 f(1) = 6 f(5/3) = 55/9 max f(x)=f(-1)=18 [-1;3] min f(x)=f(3)=2 [-1;3] ответ Решение :

На рисунке изображен график функции у = f(x), определенной на интервале (-9; 8). Определите количество целых точек, в которых производная функции положительна. y = f (x) y x f / (x) > 0, значит, функция возрастает. Найдем эти участки графика. 2. Найдем все целые точки на этих отрезках. Ответ: 8 Решение:

На рисунке изображен график функции у = f(x), определенной на интервале (-5; 5). Определите количество целых точек, в которых производная функции отрицательна. y = f (x) y x f / (x) < 0, значит, функция убывает. Найдем эти участки графика. 2. Найдем все целые точки на этих отрезках. Ответ: 5 Решение:

Непрерывная функция у = f(x) задана на отрезке [a;b] На рисунке изображен ее график. В ответе укажите количество точек графика этой функции, в которых касательная параллельна оси Ох. y = f(x) y x Ответ: 5 a b

f(x) f / (x) x На рисунке изображен график производной функции у =f (x), заданной на промежутке (- 8; 8). y = f / (x) y x Найдем точки, в которых f / (x)=0 (это нули функции). + –– + +

f(x) f / (x) x y = f / (x) y x ––++ Исследуйте функцию у =f (x) на экстремум и укажите количество ее точек минимума. 4 точки экстремума Ответ:

f(x) f / (x) x y = f / (x) y x + ––++ Найдите количество точек экстремума функции у =f (x) на отрезке [– 3; 7] Ответ:

На рисунке изображен график функции f(x), определенной на интервале (- 3;10). Найдите сумму точек экстремума функции f(x) = 35 Ответ: 35 2

На рисунке изображен график y=f'(x) производной функции f(x), определенной на интервале (-8:5). В какой точке отрезка [-3;2] принимает наибольшее значение? х у Ответ:-3

На рисунке изображен график y=f'(x) производной функции f(x), определенной на интервале (-2;20). Найдите количество точек максимума функции f(x), принадлежащих отрезку [-1;18]. Точка максимума – точка перехода от графика функции к Ответ: 3 f(x) f / (x) x _ ––+++ +

На рисунке изображен график y=f'(x) производной функции f(x), определенной на интервале (-6;8). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них. Ответ: 6

На рисунке изображен график y=f'(x) производной функции f(x), определенной на интервале (-8;6). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них. Ответ: 3