Периодические функции В природе и технике часто встречаются явления, повторяющиеся по истечении некоторого промежутка времени. Например, при вращении.

Презентация:



Advertisements
Похожие презентации
Методическая разработка по алгебре (10 класс) по теме: Периодические функции
Advertisements

Ребята, рассмотрим подробно одно из свойств тригонометрических функций – периодичность. Так что же это такое? Определение. Функция y=f(x) называется периодической,
Ограниченность. 1. Ограниченность функции. Функция f(x) называется ограниченной на данном отрезке (a,b),если существует некоторые числа m и M такие, что.
Наумова Ирина Михайловна1 Функция y = cos x Ее свойства и график.
Симметрия встречается при построении графиков функций. График четной функции симметричен относительно оси y. График нечетной функции симметричен относительно.
Что такое функция? Функциональная зависимость, или функция, - это такая зависимость между двумя переменными, при которой каждому значению независимой переменной.
ОСНОВНЫЕ СВОЙСТВА ФУНКЦИЙ. Определение. Числовой функцией с областью определения D называется соответствие, при котором каждому числу х из множества D.
Синусоида – график функции y=sin x. Урок алгебры в 9 классе. Учитель Колчинская ТМ, лицей 1.
Свойства функций. Схема исследования: Область определения Множество значений Нули функции Интервалы знакопостоянства Промежутки монотонности Точки экстремума.
Вариант 3 1. Задает ли указанное правило функцию, если: В случае положительного ответа: а) найдите область определения функции; б) вычислите значения функции.
Квадратичная функция (11 класс)
Тригонометрические функции, их свойства и графики. Периодичность тригонометрических функций. Понятие обратной функции, ее свойства.
8 класс © Федорова Татьяна Федоровна, 2009.
Периодичность функций. Функции y = sin x и y = cos x.
Уроки Построение графиков более сложных функций. Построение уравнения (факультативные занятия) www.konspekturoka.ru.
Свойства функций Демонстрационный материал. Четная функция у х y=f(x) График четной функции симметричен относительно оси ОУ Функция у=f(x) называется.
Выполнил: Аржанов Н. г. Нижневартовск Определение 2. Свойства кв. функции 3. Построение графика 4. y=ax²+n, y=a(x-m)²
Квадратичная функция, её свойства, график ? Понятие функции Определение квадратичной функции Область определения функции График.
Числовые функции и их свойства. - это соответствие, при котором каждому элементу х из множества D по некоторому правилу сопоставляется определенное число.
Функции и их свойства Автор: Семенова Елена Юрьевна y y = f(x) 0 x МОУ СОШ 5 – «Школа здоровья и развития» г. Радужный.
Транксрипт:

Периодические функции В природе и технике часто встречаются явления, повторяющиеся по истечении некоторого промежутка времени. Например, при вращении Земли вокруг Солнца её расстояние от солнца всё время меняется, но после полного оборота Земля оказывается на том же расстоянии от солнца, сто и год тому назад. Возвращается на своё место после полного оборота и лопасть турбины. периодическими функциями. Такие периодические повторяющиеся процессы описываются периодическими функциями.

Периодические функции Периодическая функция функция, повторяющая свои значения через какой-то ненулевой период, то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа (периода). Все тригонометрические функции являются периодическими.

Периодические функции Определение 1 Говорят, что функция y=f(x), x принадлежит Х имеет период Т, если для любого x принадлежит Х выполняются равенства f(x-T)=f(x)=f(x+T). Из этого определения следует, что если функция с периодом Т определена в точке х, то она определена в точках х+Т,х-Т. Любая функция имеет период, равный нулю(при Т=0 равенство превращается в тождество f(x-0)=f(x)=f(x+0)).

Определение 2 Функцию, имеющую отличный от нуля период Т, называют периодической. Если функция y=f(x), x принадлежит Х имеет период Т, то любое число, кратное Т (т.е. число вида kT, k принадлежит Z), также является её периодом. Периодические функции

Периодическая функция имеет бесконечное множество различных периодов. В большинстве случаев среди положительных периодов периодической функции есть наименьший. Его называют основным периодом этой функции, все остальные её периоды кратны основному периоду.

Периодические функции График периодической функции обладает следующей особенностью. Если Т - основной период функции y=f(x), то для построения её графика достаточно построить ветвь графика на одном из промежутков длины Т, а затем выполнить параллельный перенос этой ветви вдоль оси х на +Т,+2Т,+3Т, …. Чаще всего в качестве такого промежутка длины Т выбирают промежуток с концами в точках (-Т/2;0)и(Т/2;0).

Периодические функции Но не у всякой периодической функции есть основной период. Классический пример - функция Дирихле y=d (x), где 1,если х- рациональное число; d (x)= 0,если х- иррациональное число.

Периодические функции Любое рациональное число r является периодом этой функции. В самом деле, если х-рациональное число, то х-r, x+r –рациональные числа, а потому d (x-r)=d (x)=d (x+r)=1. Если же х – иррациональное число, то х-r, х+r – иррациональные числа, а потому d (x-r)=d (x)=d (x+r) = 0.

Периодические функции Итак, любое рациональное число является периодом функции Дирихле. Но среди положительных рациональных чисел нет наименьшнго числа, значит, у периодической функции Дирихле нет основного периода.