К ОМБИНАТОРИКА. Решение задач. Орлова Л.В., Малышкина С.Ю.

Презентация:



Advertisements
Похожие презентации
Методы решения задач. Правило суммы Если конечные множества не пересекаются, то число элементов X U Y {или} равно сумме числа элементов множества X и.
Advertisements

Выполнила ученица 5 а класса Пятакова Дарья. Человеку часто приходится иметь дело с задачами, в которых нужно подсчитать число всех возможных способов.
Комбинаторика – раздел математики, в котором при решении задач составляют различные комбинации из конечного числа элементов и подсчитывают число комбинаций.
Правила комбинаторики Основные понятия. КОМБИНАТОРИКОЙ называется раздел математики, в котором исследуется, сколько различных комбинаций (всевозможных.
Примеры комбинаторных задач Перестановки Перестановки Размещения Размещения Сочетания Сочетания.
Правила комбинаторики Основные понятия алгебра 9 класс Выполнила Гуляева Е.В. учитель математики МОУ ПСШ.
ТЕМА УРОКА: «ЭЛЕМЕНТЫ КОМБИНАТОРИКИ» (ПРАКТИКУМ) Цели: Повторить основные понятия комбинаторикиосновные понятия Сформировать умения решать различные виды.
Элементы комбинаторики Урок 1. Примеры комбинаторных задач.
Сколько четных двузначных чисел можно составить из цифр 0,1,2,4,5,9? Ответ:15 чисел
1.Правило суммы(стр2)Правило суммы(стр2) Образцы решений 2.Правило произведения (стр4)Правило произведения (стр4) Образцы решений 3.Пересекающиеся множества(
Не нужно нам владеть клинком, Не ищем славы громкой. Тот побеждает, кто знаком С искусством мыслить, тонким. Английский поэт Уордсворт.
Сочетания Выбор нескольких элементов. Выбор двух элементов из множества В чемпионате участвовали 7 команд. Каждая команда играла один матч с каждой. Сколько.
«Примеры комбинаторных задач» Урок-дуэт математика-информатика.
Элементы комбинаторики. Задача 1. Три друга – Антон, Борис и Виктор – приобрели два билета на футбольный матч. Сколько существует различных вариантов.
У кассы кинотеатра стоят четверо ребят. У двух из них сторублевые купюры, у других двух – пятидесятирублевые. Билет в кино стоит 50 рублей. В начале продажи.
Олимпиадные задачи из раздела «Статистика», «Комбинаторика», и «Теория вероятностей» Демидишина Галина Алексеевна, МБОУ «Лицей 3»
Презентация проекта по математике «Очевидное или невероятное!?»
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 1 города Суздаля» Факультативное занятие в 6 классе по теме: Учитель математики:
Проект подготовили ученики 6 «Б» класса Ильчишина Елена Александров Илья Смирнов Николай Руководитель проекта: Ингинен О.В. Луга, 2013.
Определение Область математики, в которой изучают комбинаторные задачи, называется комбинаторикой.
Транксрипт:

К ОМБИНАТОРИКА. Решение задач. Орлова Л.В., Малышкина С.Ю.

О СНОВНЫЕ ПОНЯТИЯ КОМБИНАТОРИКОЙ называется раздел математики, в котором исследуется, сколько различных комбинаций (всевозможных объединений элементов), подчиненных тем или иным условиям, можно составить из элементов, принадлежащих данному множеству. Комбинаторная задача – задача, решение которой предполагает рассмотрение перебора различных вариантов.

П РИМЕР. Из группы теннисистов, в которую входят пять человек – Антонов, Борисов, Григорьев, Сергеев, Фёдоров, тренер выделяет пару для участия в соревнованиях. Сколько существует вариантов выбора такой пары? Записать все варианты. Решение: АБ, АГ, АС, АФ, БГ, БС, БФ, ГС, ГФ, СФ – 10 вариантов.

П РАВИЛО СУММЫ Если надо выбрать n вещей, причём одну выбрать m способами, а вторую k способами, то или одну или другую вещь можно выбрать (m + k) способами. Пример. Имеется 8 шаров: в 1 ящик положили 5 шт., а 2- 3 шт.Сколькими способами можно вытащить 1 шар? Решение: из 1 ящика шар можно вытащить 5- ю способами, а из второго 3-мя. Значит, всего 5+3=8 способов

П РАВИЛО ПРОИЗВЕДЕНИЯ Если надо выбрать n вещей, причём одну выбрать m способами, а вторую k способами, то одну и другую можно выбрать (mхk) способами. Пример. В 1 ящике 5 зелёных, а 2- 3 красных шара. Сколькими способами можно вытащить 1 зелёный и 1 красный шар? Решение: зелёный можно выбрать 5-ю способами, а красный – 3-мя. Значит, 1 зелёный и 1 красный можно выбрать 3*5 = 15 способами.

З АДАЧА 1. Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневые переплеты. Сколькими способами он может это сделать? Решение : Имеется 12 книг и 3 цвета, значит по правилу произведения возможно 12 * 3 = 36 вариантов переплета.

З АДАЧА 2. Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево? Решение : В таких числах последняя цифра будет такая же, как и первая, а предпоследняя - как и вторая. Третья цифра будет любой. Это можно представить в виде XYZYX, где Y и Z - любые цифры, а X - не ноль. Значит по правилу произведения количество цифр одинаково читающихся как слева направо, так и справа налево равно 9*10*10=900 вариантов.

З АДАЧА 3. Сколько различных шестизначных чисел можно составить из цифр 0, 1, 2, 3, 4,5, если цифры в числе не повторяются? Решение. В шестизначном числе на первом месте могут стаять все цифры кроме нуля. Значит на первое место претендуют 5 цифр, на второе – 5 цифр, т. к. одну цифру мы уже заняли на первом месте, на третье место – 4, на четвёртое – 3, на пятое – 2, на шестое – 1. По правилу произведения всего чисел: 5 * 5 * 4 * 3 * 2 * 1 = 600.

З АДАЧА 4. Квартет Проказница Мартышка Козел, Осёл, Да косолапый Мишка Затеяли играть квартет … Стой, братцы стой! – Кричит Мартышка, - погодите! Как музыке идти? Ведь вы не так сидите… И так, и этак пересаживались – опять музыка на лад не идет. Тут пуще прежнего пошли у низ раздоры И споры, Кому и как сидеть… Вероятно, крыловские музыканты так и не перепробовали всех возможных мест. Однако способов не так уж и много. Сколько? Решение: на первое место претендует 4 участника, на второе – 3, на третье-2, на четвёртое – 1. По правилу произведения 4*3*2*1= 24 способа пересаживаний.

З АДАЧА 5. При встрече 8 друзей обменялись рукопожатиями. Сколько всего было сделано рукопожатий? Решение: Порядок выбора не имеет значения: если Агапеев пожимает руку Зайцеву, то одновременно и Зайцев пожимает руку Агапееву, поэтому общее количество рукопожатий (пар) равно 8 7:2=28. Ответ: 28 рукопожатий.

П РОВЕРЬ СЕБЯ Что такое комбинаторика? В чём состоит правило суммы? В чём состоит правило произведения? В меню столовой предложено на выбор 5 первых, 8 вторых и 4 третьих блюда. Сколько различных вариантов обедов, состоящих из одного первого, одного второго и одного третьего блюда, можно составить из предложенного меню? (Ответ.160) Сколькими различными способами можно назначить двух ребят на дежурство по столовой, если в классе 22 учащихся? (Ответ.231)