Величина называется случайной, если она принимает различные результаты при проведении опыта, причем вероятность каждого исхода различна. Случайная величина называется дискретной, если в пределах одного опыта, количество значений которые она может принимать, конечно. Понятие дискретной случайной величины
Законом распределения дискретной случайной величины называют соответствие между ее возможными значениями и вероятностями их появления. Закон распределения можно задать таблично, аналитически (в виде формулы Бернулли) и графически (в виде многоугольника распределения). Табличное задание закона распределения: Здесь х 1, х 2, x 3,...,х n значения, которые может принять случайная дискретная величина X и их вероятности p 1 =Р(Х=х 1 ), p 2 =Р(Х=х 2 ), p 3 =Р(Х=х 3 ), p 4 =Р(Х=х 4 ), p n =Р(Х = х n ) и p 1 +p 2 +p 3 +p p n =1. XX1X2X3…Xn PP1P2P3…Pn
Формула Бернулли формула в теории вероятности, позволяющая находить вероятность появления события A при независимых испытаниях. Формула Бернулли позволяет избавиться от большого числа вычислений сложения и умножения вероятностей при достаточно большом количестве испытаний. Названа в честь выдающегося швейцарского математика Якоба Бернулли, выведшего формулу. Испытание называется независимым от события А если вероятность появления события А в каждом испытании не зависит от результатов проведения испытаний. где n – количество независимых испытаний; p – вероятность наступления события А; q – вероятность того, что событие А не произойдет, q = 1 – p; m – количество раз, когда событие А не произошло при n различных испытаний (m < n).
Математическое ожидание – понятие среднего значения, одна из важнейших характеристик распределения вероятностей случайной величины. Для случайной величины X, принимающей последовательность значений x 1, x 2,..., x n, с вероятностями, равными соответственно p 1, p 2,..., p n, математическое ожидание определяется формулой: где k – количество независимых испытаний; – значение случайной дискретной величины; – вероятность значения случайной дискретной величины;
Дисперсия (от лат. dispersio - рассеяние) в математической статистике и теории вероятностей - мера рассеивания (отклонения от среднего). В статистике дисперсия есть среднее арифметическое из квадратов отклонений наблюденных значений (x1, x2,...,xn) случайной величины от их среднего арифметического. В теории вероятностей дисперсия случайной величины Х называется математическое ожидание Е (Х m х ) 2 квадрата отклонения Х от её математического ожидания m х = Е (Х). Дисперсия случайной величины Х обозначается через D (X) или через s 2 X.
Найти распределение вероятности числа очков, выпавших на кубике с первого броска, математическое ожидание и дисперсию. Решение. Выпадение любой грани равновероятно, так что распределение будет выглядеть так: Математическое ожидание: Дисперсия: X P1/6