Решение задач оптимизации в MS Excel ГБОУ Центр образования 133 Невского района авт. Баринова Е. А.
Для решения задач оптимизации необходимо : Задать целевую функцию Создать математическую модель задачи Решить задачу на компьютере
Математическая модель Математическая модель – это приближенное описание какого - либо класса явлений средствами математической символики. При составлении математической модели решения задачи оптимизации искомые величины принимаются за неизвестные и составляется система неравенств, наиболее полно характеризующих решение поставленной задачи. В любую математическую модель входят две составляющие : Ограничения, которые устанавливают зависимости между переменными. Граничные условия показывают, в каких пределах могут быть значения искомых переменных в оптимальном решении.
Задача Компания производит полки для ванных комнат двух типов - А и В. Агенты по продаже считают, что за неделю на рынке может быть реализовано до 550 полок. Для каждой полки типа А требуется 2 м 2 материала, для полки типа В - 3 м 2 материала. Компания может получить до 1200 м 2 материала в неделю. Для изготовления одной полки типа А требуется 12 мин. работы оборудования, а для изготовления одной полки типа В - 30 мин. Оборудование можно использовать 160 час. в неделю. Если прибыль от продажи полок типа А составляет 3 долл., а от полок типа В - 4 долл., то сколько полок надо выпускать в неделю, чтобы получить максимальную прибыль ?
Целевая функция Очевидно, что в качестве критерия оптимизации в данном случае выступает функция прибыли. Оптимальным будет считаться тот из вариантов решения, в котором значение прибыли будет максимальным. Учитывая, что «… прибыль от продажи полок типа А составляет 3 долл., а от полок типа В - 4 долл.…» целевая функция будет выглядеть следующим образом : 3x1 + 4x2 max, где x1 – объем производства полок типа A x2 – объем производства полок типа B
Ограничение на объем производства : «… Агенты по продаже считают, что неделю на рынке может быть реализовано до 550 полок …» Очевидно, что совокупный объем производства полок не должен превышать 550 единиц, или, в математическом виде : x1 + x2 550
Ограничение на использование оборудования : «… Для изготовления одной полки типа А требуется 12 мин. работы оборудования, а для изготовления одной полки типа В - 30 мин. Оборудование можно использовать 160 часов в неделю …» На основе этой информации можно сделать вывод, что общее время использования оборудования в рамках данного проекта не должно превышать 160 часов в неделю. Переведя время, необходимое для изготовления одной полки в часы ( с целью сопоставимости единиц измерения правой и левой части неравенства ) получим : 0,2x1 + 0,5x2 160
Ограничение на использование материалов : «… Для каждой полки типа А требуется 2 м 2 материала, для полки типа В - 3 м 2 материала. Компания может получить до 1200 м 2 материала в неделю …» На основе этой информации можно сделать вывод, что общее количество материала, затрачиваемого для реализации данного проекта, не должно превышать 1200 м 2 : 2x1 + 3x2 1200
Граничные условия В качестве граничных условий в данном примере могут быть использованы следующие утверждения, вытекающие из сути поставленной задачи : Объем производства полок типа А и полок типа В – неотрицательное значение. Объем производства полок типа А и полок типа В – целое число, запишем таким образом : x1, x2 0 x1, x2 – целое
Ввод условий задачи Ввод условий задачи состоит из следующих основных шагов : Создание формы для ввода данных, необходимых для последующего решения. Ввод исходных данных и зависимостей из математической модели. Указание целевой ячейки ( ячейки, в которую введена целевая функция ), ввод ограничений и граничных условий в диалоговом окне Поиск решения.
Создание формы для ввода данных Такая форма должна содержать возможность ввода всех данных, необходимых для решения поставленной задачи : искомых переменных ; целевой функции ; правой и левой части неравенств, описывающих ограничения, налагаемые на возможные варианты решения поставленной задачи.
Ввод исходных данных Отметим, что целевая функция и левые части неравенств, определяющих возможные варианты решения поставленной задачи, вводятся формулой, в которой роль искомых переменных играют адреса ячеек, зарезервированных для вывода их значений после решения задачи, а роль коэффициентов – адреса ячеек, содержащих соответственные коэффициенты.
Назначение целевой функции, ввод ограничений и граничных условий Данная стадия ввода условия задачи осуществляется в диалоговом окне Поиск решения
Назначить целевую ячейку Для этого в поле « Установить целевую ячейку :» вводится адрес ячейки, содержащей целевую функцию. Затем устанавливается направление последней – значение, к которому она должна стремиться исходя из условий задачи ( минимальное, максимальное, конкретное, задаваемое пользователем ). В поле « Изменяя ячейки :» ввести адреса ячеек, зарезервированных для искомых переменных.
Ввести ограничения и граничные условия Ввести ограничения и граничные условия. Для этого в диалоговом окне Поиск решения нажать на кнопку Добавить. В открывшемся диалоговом окне Добавление ограничений : в поле « Ссылка на ячейку :» ввести адрес ячейки листа, содержащей формулу для расчета показателя, используемого в качестве левой части неравенства, из списка знаков неравенств выбрать необходимый знак, в поле « Ограничение :» указать адрес ячейки, содержащей показатель, используемый в качестве правой части неравенства.
Получение результата После нажатия на кнопку Выполнить диалогового окна Поиск решения на экране появляется диалоговое окно Результаты поиска решения.
Решение найдено
Оптимальное решение поставленной задачи полок типа А - в количестве 450 штук ( В 3); полок типа В – в количестве 100 штук ( С 3). При этом максимальная прибыль будет составлять 1720 единиц, а ресурсы используются следующим образом : потребление материала – 1200 единиц (D10); использование оборудования – 140 часов (D11).