Российский университет дружбы народов Институт гостиничного бизнеса и туризма В. Дихтяр Теория и методология социально- экономических исследований в туристской.

Презентация:



Advertisements
Похожие презентации
Российский университет дружбы народов Кафедра экономико-математического моделирования В.И. Дихтяр ФИНАНСОВЫЙ МЕНЕДЖМЕНТ Раздел 2.Инвестиционные решения.
Advertisements

В.И. Дихтяр Теория и методология социально- экономических исследований в туристской индустрии Раздел 2.Статистический анализ данных в сфере туризма Тема.
Теория статистики Корреляционно-регрессионный анализ: статистическое моделирование зависимостей Часть 1. 1.
Элементы теории корреляции. План: I. Понятие корреляционной зависимости: 1) Коэффициент корелляции 2) Проверка гипотезы о значимости выборочного коэффициента.
Линейная модель парной регрессии и корреляции. 2 Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального.
Линейная функцияЛинейная функцияЛинейная функция у=кх+в чему равны коэффициенты к и в. Какой угол образует график с положительным направлением оси х. У=2х+4.
АНАЛИЗ ДАННЫХ НА КОМПЬЮТЕРЕ. Регрессионный анализ.
Лекция 6 Линейная регрессия. Простая линейная регрессия.
1 Новая математическая модель линейной регрессии между двумя физическими величинами с учетом их случайных погрешностей Щелканов Николай Николаевич г. Томск.
Общая теория статистики Регрессионно- корреляционный анализ.
Метод наименьших квадратов В математической статистике методы получения наилучшего приближения к исходным данным в виде аппроксимирующей функции получили.
Лекция 7 Постникова Ольга Алексеевна1 Тема. Элементы теории корреляции
Регрессионный анализ. Основная особенность регрессионного анализа: при его помощи можно получить конкретные сведения о том, какую форму и характер имеет.
Основы корреляционного и регрессионного анализа. План лекции: 1.Способы изучения корреляционных зависимостей. 2.Определение коэффициента парной линейной.
Российский университет дружбы народов Институт гостиничного бизнеса и туризма В.И. Дихтяр Теория и методология социально- экономических исследований в.
Лекция 1 Введение.. Опр. эконометрика это наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов.
ЛЕКЦИЯ 8 КОРРЕЛЯЦИОННО- РЕГРЕССИОННЫЙ АНАЛИЗ. МОДЕЛИРОВАНИЕ СВЯЗЕЙ.
Метод наименьших квадратов УиА 15/2 Айтуар А.. В математической статистике методы получения наилучшего приближения к исходным данным в виде аппроксимирующей.
7 класс Линейная функция Prezentacii.com. Линейная функция График линейной функции Нахождение наибольшего и наименьшего значения функции на отрезке Угловой.
Проверка качества спецификации модели. Качество спецификации модели Под качеством спецификации модели понимается: - качество выбора функции уравнения.
Транксрипт:

Российский университет дружбы народов Институт гостиничного бизнеса и туризма В. Дихтяр Теория и методология социально- экономических исследований в туристской индустрии Раздел 2.Количественные и вероятностные методы исследования Тема 2.4.Линейные зависимости, корреляционный и регрессионный анализ. Модель линейной регрессии, вычисление ее параметров.

2 Определения Ассоциация – связь между переменными Регрессия – описание природы связи Корреляция – измерение тесноты связи сильная ли связь между ежемесячными расходами на рекламу и ежемесячным объемом продаж

3 Линейная регрессия - связь между переменными посредством линейной модели. Продажа, Ф. ст./мес. Расходы на рекламу, Ф. ст./мес. Рис Пример линейной связи

4 Пример нелинейной связи Продажа, Ф. ст./мес. Расходы на рекламу, Ф. ст./мес.

5 Модель Θ позволяет упростить и понять реальную ситуацию объяснить ее путем последующего анализа сделать прогнозы развития осуществлять управление ситуацией Для решения этих задач модель должна быть достаточно реалистичной.

6 Пример Ситуация: поставки на короткие расстояния внутри города. ζ: оценить ω услуги, определив t поставки на любом расстоянии 1. Реальность. Факторы, помимо пройденного расстояния, которые повлияют на затраченное t: пробки на дорогах, время суток, дорожные работы, погода, дорожная система, водитель, вид транспорта и т.п..

7 Модель (примера) 2. Упрощение. Рассматривается связь между расстоянием, измеряемым кратчайшим маршрутом на линиях, и затраченным t. 3. Ď. t и расстояние каждой десятой поездки, произвольно выбранный час и день 4. Обозначения. Расстояние – х, t – у.

8 Данные о расстоянии и времени поставок Расстояние, мильВремя, мин 3,5 2,4 4,9 4,2 3,0 1,3 1,0 3,0 1,5 4,

9 Анализ 1. t расстояние 2. линейная Θ будет приближением к действительности к истинному t и расстоянию 3. множество различных расстояний при различном t 4. Необходимо найти способ определения точек этой линии по исходным Ď

10 Зависимость времени поставок от расстояния по совокупности случайных данных о поставках Время одной поставки, мин Расстояние одной поставки, миль

11 Распределение t поставок при определенном расстоянии Время, мин Расстояние, миль

12 Линейная регрессия ŷ = a + bx а - пересечение с осью у b - угол наклона линии регрессии (коэффициент регрессии) х 1 y 1 фактическое t х 1 ŷ 1 прогнозируемое t

Линейный прогноз: функция ТЕНДЕНЦИЯ (Y; X; X + ; c) Y – диапазон, содержащий значения Y [Y] X [X] Х + [новые значения X]: ТЕНДЕНЦИЯ соответствующие значения Y (X + опущен совпадет с Х; Х и X + опущены Х = [1, 2, 3..] размера [Y]) c – константа: с = t опущен вычисляет a; с = f 0 опущен a = 0, b подбирается так, чтобы ŷ = bx ввод Y, X вычисляется ŷ без вычисления а и b 13

Функция НАКЛОН (Y; X) Вычисляет коэффициент b (скорость изменения вдоль Ox) Y [Y] X [X] Функция ОТРЕЗОК (X; Y) Вычисляет коэффициент a X [X] Y [Y] 14

15 Ошибка е - ошибка (отклонение, остаток) e 1 = y 1 – ŷ 1 линейная регрессия линия наилучшего подбора: min Σ e i 2 (метод наименьших квадратов)

Формулы n – размер выборки b = Cov(x, y) / V(x) a = My – b Mx 16

17 Диаграмма x1x1 e x y Общая вариация необъяснимая объяснимая ŷ y ŷ =a+bx линия регрессии y =ў среднее значение y ў

18 Теснота линейной связи Связь х у существует: диаграмма, линия регрессии + линия у = y х 1 несколько точек с разными значениями у, но(!) y = ŷ + e линейная связь только частично объясняет вариации значений у

19 Весь массив точек Суммарная вариация (общая) (y - y ) 2 С учетом линейной связи (объясненная вариация) (ŷ - y ) 2 Не объясняется линейной связью (влияние факторов, не включенных в линейную Θ ) (y - ŷ) 2

20 объясненная вариация / общая вариация (мера линейности связи) выражается в % и показывает дисперсию у, которая объясняется изменением х, включенной в Θ полная линейная связь r 2 = 1 (100%) связь отсутствует r 2 = 0 r 2 не определяет или у с ростом x r Коэффициент детерминации

21 r = (r 2 ): | r | < 1 Знак r = знаку b r > 0 положительная связь ( x y) Коэффициент корреляции r

22 Коэффициент корреляции r сила линейной связи точки на графике будут лежать более близко к прямой линии, r 1 r 0, а точки будут более рассеяны r = 0 линейной связи не существует (!! не значит, что не существует вообще никакой связи)

23 Связи между переменными x y x y r 0r 0 r 0 Рис Случай отсутствия связи между переменными. Рис Сильная нелинейная связь между переменными.