Графический метод решения ЗЛП Лекция 5. Рассмотрим ЗЛП на плоскости. при ограничениях.

Презентация:



Advertisements
Похожие презентации
Основная задача линейного программирования Геометрическая интерпретация.
Advertisements

Решение ЗЛП в среде Excel. Основные параметры окна Поиск решения. Установить целевую ячейку. Заполняем поле Установить целевую ячейку. Изменяя ячейки.
ТЕМА 2. Статическая оптимизация 2.1. Общая постановка задачи математического программирования 2.2. Задача линейного программирования и методы ее решения.
МЕТОДЫ ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ ТКАЧЕНКО МАРИНА ГЕННАДЬЕВНА Кандидат физико-математических наук, доцент кафедры управления в экономических и социальных.
Ребята, мы продолжаем изучать степенные функции. Темой сегодняшнего урока будет функция - корень кубический из х. А что же такое корень кубический? Число.
LOGO Графическое решение задач линейного программирования.
Графическое решение задач линейного программирования.
Тема: «Применение производной к исследованию функции»
Ребята, мы переходим к изучению новой темы, правда стоит отметить, что она тесно связана с нашей предыдущей темой степенных функций и корней n-ой степени.
Различные виды уравнения прямой презентацию подготовила ученица 7 «Б» класса МОУ «Гимназия 1» Распарина Ольга.
Две взаимно перпендикулярные числовые оси с общим началом 0 образуют прямоугольную систему координат на плоскости. Горизонтальная ось называется осью.
Сложные задачи части С задачи с параметром « Математике нельзя научиться, глядя как это делает сосед! » А. Нивен.
Использование графического метода решения задач с параметрами Свойства функций в задачах с параметрами Координатная плоскость (x; y)
Методы решений заданий С5 (задачи с параметром) Метод областей в решении задач.
Введение В различных математических олимпиадах последних лет ученикам всё чаще предлагают уравнения, которые содержат знак функции антье. Но, как показывает.
k = f (x o ) = tg α – это угловой коэффициент касательной. k = f (x o ) = tg α – это угловой коэффициент касательной. f(x o ) к графику дифференцируемой.
Параметр плюс модульПараметр плюс модульПараллельный перенос вдоль оси ординат Для построения графика функции необходимо график функции перенести вдоль.
Р ешение задач с параметром подборка заданий для подготовки к ЕГЭ по математике (С5) Занятие математического кружка Учитель: Яковлева Т.Л.
Линейная функция Выполнено: Дроздовой А.Д. План Замечание. Информация на каждом слайде появляется после щелчка мыши. Щелкаем несколько раз.
ГЛАВА 3 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. §1. Прямая на плоскости. Различные виды уравнений прямой на плоскости. Пусть имеется прямоугольная система координат.
Транксрипт:

Графический метод решения ЗЛП Лекция 5

Рассмотрим ЗЛП на плоскости. при ограничениях

Каждое неравенство системы ограничений геометрически определяет полуплоскость с граничными прямыми Условия неотрицательности определяют полуплоскости с граничными прямыми Если система ограничений совместна, то область ее решения есть множество точек, принадлежащих всем указанным полуплоскостям. Совокупность этих точек называют многоугольником решений. Или областью допустимых решений (ОДР) ЗЛП.

Опр. Множество точек называется выпуклым, если вместе с любыми двумя точками оно содержит и весь отрезок. Тогда ОДР может быть вида: Выпуклый многоугольник; Выпуклая многоугольная неограниченная область; Пустая область; Отрезок; Единственная точка.

Целевая функция определяет на плоскости семейство прямых, одна из которых проходит через начало координат. Эта прямая называется основной. Прямая эта перпендикулярна нормальному вектору. Этот вектор указывает направление наискорейшего возрастания функции, а противоположный ему – направление наискорейшего убывания. Так что это вектор вида

Прямая, перпендикулярная градиенту, является линией уровня целевой функции и поэтому во всех своих точках принимает одно и тоже значение. Приравнивая целевую функцию к постоянной, а затем меняя ее, получим семейство прямых, каждая из которых является линией уровня, которые обладают свойством: при смещении в одну сторону уровень только возрастает, а в другую- только убывает.

Геометрическая интерпретация ЗЛП: Среди множества решений, которые находятся в многоугольнике решений, следует отыскать точку многоугольника, координаты которой обращают в максимум или минимум целевую функцию. Теорема. Если ЗЛП имеет оптимальный план, то целевая функция принимает свое оптимальное значение в одной из вершин многоугольника решений.

Для определения этой вершины строится основная прямая, которую перемещают в направлении градиента до тех пор, пока она не коснется последней крайней точки многоугольника решений. Это может быть вершина многоугольника, координаты которой и определяют максимальное значение целевой функции. Может быть и такой случай, когда последняя точка лежит на стороне многоугольника, и тогда целевая функция принимает максимальное значение на всей этой прямой. Если же в направлении градиента многоугольник решений неограничен, то.

Графический метод решения ЗЛП Нахождение решения ЗЛП на основе ее геометрической интерпретации включает следующие этапы: 1).Строят прямые, уравнения которых получаются в результате замены в ограничениях задачи знаков неравенств на знаки равенств. 2).Находят полуплоскости, определяемые из ограничений задачи. 3).Находят многоугольник решений. 4). Строят вектор. 5). Строят прямую, проходящую через многоугольник решений. 6).Передвигают эту прямую в направлении градиента. 7)Определяют координаты точки максимума функции и вычисляют значение целевой функции в этой точке.

Пример. Задача о костюмах. Намечается выпуск двух видов костюмов - мужских и женских.. На женский костюм требуется 1м шерсти, 2м полиэстера и 1человеко-день трудозатрат. На мужской –3,5м шерсти, 0,5м полиэстера и 1 человеко-день трудозатрат. Всего имеется 350м шерсти, 240 м полиэстера и150 человекодней трудозатрат.

Требуется определить, сколько костюмов каждого вида необходимо сшить, чтобы обеспечить максимальную прибыль, если прибыль от реализации женского костюма составляет 10 денежных единиц, а от мужского-20 денежных единиц. При этом следует иметь в виду, что необходимо сшить не менее 60 мужских костюмов.

Решение. Обозначим: -число женских и число мужских костюмов соответственно. Целевая функция. Ограничения

Построим прямые Первая прямая пересекает оси координат в точках (350;0) и (0;100), вторая – в точках (120;0) и (0;0;480), третья – в точках (150;0) и (0;150).Четвертая прямая проходит параллельно оси.

Строим все прямые и получаем четырехугольник, все точки которого удовлетворяют всем четырем функциональным ограничениям. Легко проверить: например, т.(0;0) лежит ниже всех трех первых прямых, но не удовлетворяет последнему соотношению. Так что, все точки внутри многоугольника удовлетворяют всем четырем неравенствам. Теперь построим градиент целевой функции (10;20). Для этого соединим точку (10,20) с началом координат. Можно построить вектор, пропорциональный этому вектору, т.е. длиннее или короче в зависимости от масштаба

Затем перпендикулярно ему основную прямую и будем перемещать ее в направлении градиента до ее выхода из ОДР. Это произойдет в точке пересечения прямых

Решим систему двух уравнений и получим точку При этих значениях

maxF=2300 Линия уровня gradF=(10,20)

Пример Найти максимум и минимум функции при ограничениях

Решение. Строим многоугольник решений. Для этого изобразим прямые Первая из них проходит через токчи (8;0) и (0;8), вторая – через точки (0,5;0) и (0;-1), третья –через точки (2;0) и (0;-1). Далее изобразим градиент (3;3) и линии уровня.

B A CD Линии уровня

Передвигая линию уровня в направлении возрастания, т.е. в направлении градиента, получаем, что целевая функция достигает максимального значения вдоль прямой На прямой возьмем точку, например В, координаты которой можно найти из системы уравнений Целевая функция здесь имеет значение

При решении данной задачи на минимум целевой функции линию уровня следует двигать в направлении, обратном направлению градиента. Целевая функция достигает минимума в точке D пересечения прямой с осью, т.е. в точке ((0,5;0). Тогда

Пример. Найти максимум функции при ограничениях

Эта задача не имеет решения, т.к. целевая функция не ограничена сверху на ОДР. Это означает, что

Линии уровня градиент

Найти максимум функции при ограничениях

Строим прямые, заменив знаки неравенств на знаки равенства, а затем закрасим область допустимых решений. Очевидно, начало координат находится ниже прямой, не удовлетворяет второму неравенству, поэтому точки области лежат правее этой прямой. Последнему неравенству удовлетворяет и поэтому получаем область на рисунке

Из рисунка видим, что множество планов пусто, т.к.закрашенные области не имеют общих точек.