Урок геометрии в 8 классе Практические приложения подобия треугольников.

Презентация:



Advertisements
Похожие презентации
ПОДОБИЕ ТРЕУГОЛЬНИКОВ. Признаки подобия треугольников По двум углам По двум сторонам и углу По трём сторонам.
Advertisements

Подобные треугольники. Решение задач. Подобные треугольники Ответьте на вопросы : Сформулируйте понятие сходственных сторон треугольников Какие треугольники.
Company LOGO Применение подобия к решению задач 8 класс.
Геометрия Выполнила: Фролова Ж г
ПОДОБНЫЕ ТРЕУГОЛЬНИКИ © Т.И.Каверина, Пропорциональные отрезки Отношением отрезков AB и CD называется отношение их длин, т.е. Отрезки AB и CD пропорциональны.
1. Существует треугольник, стороны которого равны 5, 8, Если один из углов равнобедренного треугольника 140º, то другой 20º. 3. Сумма углов прямоугольного.
Зачёт по Геометрии.. Два треугольника называются подобными, если их углы соответственно равны, а стороны одного пропорциональны сходственным сторонам.
Подобие треугольников. Содержание:Содержание: Определение подобных треугольников. Определение подобных треугольников. Признаки подобия треугольников.
1. Существует треугольник, стороны которого равны 5, 8, Если один из углов равнобедренного треугольника 140º, то другой 20º. 3. Сумма углов прямоугольного.
Геометрия глава 7 Подобные треугольники. Подготовила Пономарева Кристина ученица 9 класса СПб лицей 488( учитель Курышова Н.Е ).
Подобие треугольников. Задача_1: В прямоугольном треугольнике ABC проведена высота CK к гипотенузе. Назовите пары подобных треугольников. Докажите подобие.
Равнобедренный треугольник, его свойства 1.
Некоторые свойства прямоугольных треугольников Урок геометрии 7 класс.
Прямоугольник Параллелограмм, у которого все углы прямые, называется прямоугольником. Теорема (Признак прямоугольника.) Если в параллелограмме диагонали.
1 Треугольник, периметр которого равен 24 см, делится высотой на два треугольника, периметры которых равны 12 см и 20 см. Найти высоту треугольника.
На тему: «Треугольники» Выполнили: Ученицы 9б класса МСОШ Якубова Анастасия, Симушкина Вероника Руководитель: Радченко Л.А.
0 00 Общий для всех команд вопрос: Дайте определение подобных треугольников А В С В1В1 С1С1 А1А1 Два треугольника называются подобными, если их углы соответственно.
Туляева А.Л.. Равнобедренный Равносторонний Разносторонний.
Применение подобия к доказательству теорем и решению задач.
Диктант 1 Тема: Треугольники. 1.Треугольник, у которого две стороны равны - 1. Прямоугольный 2. Равносторонний 3. Равнобедренный 4. Нет правильного ответа.
Транксрипт:

Урок геометрии в 8 классе Практические приложения подобия треугольников.

Повторение теоретического материала Что могут обозначать на схеме два верхних треугольника? Что обозначают стрелки, проведенные от этих треугольников? Сформулируйте определение подобия и три признака подобия А о чем вам говорят три нижних треугольника? Что за обозначения на них?

Найдите пары подобных треугольников и определите признак подобия :

Треугольники ABC и MNP подобны. Периметр треугольника MNP равен 105. Найдите отношение площадей треугольников.

Найти периметр треугольника MNP

Тест. Если высказывание истинно – отвечаем «Да», если ложно - Нет 1.Два треугольника подобны, если их углы соответственно равны и сходственные стороны пропорциональны. 2.Два равносторонних треугольника всегда подобны. 3.Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника, то такие треугольники подобны. 4.Стороны одного треугольника имеют длины 3, 4, 6 см, стороны другого треугольника равны 9, 14, 18 см. Подобны ли эти треугольники? 5.Периметры подобных треугольников относятся как квадраты сходственных сторон. 6.Если два угла одного треугольника равны 60 и 50, а два угла другого треугольника равны 50 и 80, то такие треугольники подобны. 7.Два прямоугольных треугольника подобны, если имеют по равному острому углу. 8.Два равнобедренных треугольника подобны, если их боковые стороны пропорциональны. 9.Если отрезки гипотенузы, на которые она делится высотой, проведенной из вершины прямого угла, равны 2 и 8 см, то эта высота равна 4 см. 10.Если медиана треугольника равна 9 см, то расстояние от вершины треугольника до точки пересечения медиан равно 6 см.

Проверим себя Номер вопросаВерный ответКоличество баллов за верный ответ 1да1 б 2да1 б 3да1 б 4Нет1 б 5Нет1 б 6Нет2 б 7Да2 б 8Нет2 б 9Да3 б 10да3 б

При помощи зеркала Задача 1.

Задача 2. «Геометрия листьев»

Лист поросли имеет длину 15 см, а лист с ветви дерева – только 4 см. Во сколько примерно раз площадь листа поросли больше площади листа древесного? Решите задачу

Домашнее задание: Задания 1 уровня сложности- 541, 542 Задания 2 уровня сложности- 545, 547