МОУ СОШ 256 г. Фокино 11 класс.. Цели урока: Показать, как используется скалярное произведение векторов при решении задач на вычисление углов между двумя.

Презентация:



Advertisements
Похожие презентации
11 класс. Угол между векторами. Скалярное произведение векторов.
Advertisements

11 класс. Цель урока: Показать, как используется скалярное произведение векторов при решении задач на вычисление углов между двумя прямыми, между прямой.
Вычисление углов между прямыми и плоскостями г.
ЗАДАЧИ ЕГЭ (С2). Расстояние от точки до прямой, не содержащей эту точку, есть длина отрезка перпендикуляра, проведенного из этой точки на прямую. Расстояние.
Вычисление угла между прямыми Вычисление угла между прямыми.
МОУ СОШ 256 г.Фокино. 11 класс.. Цели урока: Ввести понятия угла между векторами и скалярного произведения векторов. Рассмотреть формулу скалярного произведения.
«Перпендикулярные прямые в пространстве» «Перпендикулярность прямой и плоскости» Тема урока:
Нормальным вектором плоскости (или нормалью плоскости) называют вектор, перпендикулярный данной плоскости.p n.
Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними. Скалярное произведение нулевых векторов равно нулю тогда.
ab= a b cos( ) ab ab = 0= 0= 0= 0 ab ab > 0> 0> 0> 0 ab < 90 0 ab < 0< 0< 0< 0 ab > 90 0 a 2a 2a 2a 2= a 2 Повторение.
«Перпендикулярные прямые в пространстве» «Перпендикулярность прямой и плоскости» Математика, 10 класс.
Презентация к уроку по геометрии (11 класс) по теме: Скалярное произведение векторов
Тема : Решение задач по теме « Вычисление углов между прямыми и плоскостью » Презентацию подготовила учитель математики МОУ «Средняя общеобразовательная.
Скалярное произведение векторов. Угол между векторами:
9 класс © Федорова Татьяна Федоровна, Содержание 1.Устные упражненияУстные упражнения 2.Связь между координатами вектора и координатами его начала.
СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ Скалярным произведением двух ненулевых векторов называется произведение их длин на косинус угла между ними. Если хотя бы.
Скалярное произведение векторов МОУ СОШ 5 – «Школа здоровья и развития» г. Радужный.
Презентация к уроку по геометрии (9 класс) по теме: 9 класс.Скалярное произведение в координатах.
Пусть прямая задана уравнением: И пусть задана плоскость Рассмотрим возможные случаи ориентации прямой и плоскости:
Кунгина Н. В. МОУ 10 г. Дубна, Московская область.
Транксрипт:

МОУ СОШ 256 г. Фокино 11 класс.

Цели урока: Показать, как используется скалярное произведение векторов при решении задач на вычисление углов между двумя прямыми, между прямой и плоскостью.

Повторяем теорию: Как находят координаты вектора, если известны координаты его начала и конца? Как находят координаты середины отрезка? Как находят длину вектора? Как находят расстояние между точками? Как вы понимаете выражение «угол между векторами»?

Повторяем теорию: Какие векторы называются перпендикулярными? Что называется скалярным произведением векторов? Чему равно скалярное произведение перпендикулярных векторов? Чему равен скалярный квадрат вектора? Свойства скалярного произведения? 0 Скалярный квадрат вектора равен квадрату его длины.

Направляющий вектор прямой. Ненулевой вектор называется направляющим вектором прямой, если он лежит на самой прямой, либо на прямой, параллельной ей. а В А

Визуальный разбор задач из учебника (п.48). 1. Найти угол между двумя прямыми (пересекающимися или скрещивающимися), если известны координаты направляющих векторов этих прямых. а)б) θ θ φ = θφ = θ

Визуальный разбор задач из учебника (п.48). 2. Найти угол между прямой и плоскостью, если известны координаты направляющего вектора прямой и координаты ненулевого вектора, перпендикулярного к плоскости.. а)б) α а φ θ α а φ φ θ

464 (а) Дано: Найти: угол между прямыми АВ и CD. Ваши предложения… 1.Найдем координаты векторов и 2. Воспользуемся формулой: φ = 30 0

466 (а) Дано: куб АВСDA 1 B 1 C 1 D 1 точка М принадлежит АА 1 АМ : МА 1 = 3 : 1; N – середина ВС Вычислить косинус угла между прям. MN и DD 1 C C1C1 A1A1 B1B1 D1D1 A B D 1. Введем систему координат. х у z 2. Рассмотрим DD 1 и МN. М N 3. Пусть АА 1 = 4, тогда 4. Найдем координаты векторов DD 1 и MN. 5. По формуле найдем cosφ. Ответ:

Задача. Дано: прямоугольный параллелепипед АВСDA 1 B 1 C 1 D 1 ; DA = 2; DC = 2; DD 1 = 3. C C1C1 A1A1 B1B1 D1D1 A B D Найти угол между прямыми СВ 1 и D 1 B. х у z Ваши предложения… 1. Введем систему координат D xyz 2. Рассмотрим направляющие прямых D 1 B и CB По формуле найдем cosφ.

467 (а) Дано: прямоугольный параллелепипед АВСDA 1 B 1 C 1 D 1 ; АВ = ВС = ½ АА 1 Найти угол между прямыми ВD и CD 1. C C1C1 A1A1 B1B1 D1D1 A B D 1 способ: 1. Введем систему координат B xyz х у z 2. Пусть АА 1 = 2, тогда АВ = ВС = Координаты векторов: 4. Находим косинус угла между прямыми:

C C1C1 A1A1 B1B1 D1D1 A B D х у z 467 (а) Дано: прямоугольный параллелепипед АВСDA 1 B 1 C 1 D 1 ; АВ = ВС = ½ АА 1 Найти угол между прямыми ВD и CD 1. 2 способ: 1. Т.к. СD 1 || ВА 1, то углы между ВD и ВА 1 ; ВD и СD 1 – равны. 2. В ΔВDА 1 : ВА 1 = 5, А 1 D = 5 3. ΔВDА: по теореме Пифагора 4. По теореме косинусов:

П. 48, 466 (б, в) 467 (б) – двумя способами.