Основы логики и логические основы компьютера
Содержание Логическое следование (импликация) Логическое равенство (эквивалентность)
Логическое следование (импликация ) Логическое следование (импликация) образуется соединением двух высказываний в одно с помощью оборота речи Логическая операция импликации, обозначается АВ.
Составное высказывание, образованное с помощью операции логического следования (импликации), ложно тогда и только тогда, когда из истинной предпосылки (первого высказывания) следует ложный вывод (второе высказывание). АВАВАВ
Пример Например, высказывание истинно, так как истинны и первое высказывание (предпосылка), и второе высказывание (вывод). Высказывание ложно, так как из истинной предпосылки делается ложный вывод. Однако операция логического следования несколько отличается от обычного понимания слова. Если первое высказывание (предпосылка) ложно, то вне зависимости от истинности или ложности второго высказывания (вывода) составное высказывание истинно. Это можно понимать таким образом, что из неверной предпосылки может следовать что угодно.
Логическое равенство (эквивалентность ) Логическое равенство (эквивалентность) образуется соединением двух высказываний в одно с помощью оборота речи Логическая операция эквивалентности, обозначается А~В.
Составное высказывание, образованное с помощью логической операции эквивалентности истинно тогда и только тогда, когда оба высказывания одновременно либо ложны, либо истинны. АВА~ВА~В
Пример Рассмотрим, например, два высказывания: А= и В=. Составное высказывание, полученное с помощью операции эквивалентности, истинно, когда оба высказывания либо истинны, либо ложны :. Составное высказывание, полученное с помощью операции эквивалентности, ложно, когда одно высказывание истинно, а другое – ложно:.
Приоритеты выполнения логических операций 1.Действие в скобках 2.Логическое отрицание (инверсия) 3.Логическое умножение (конъюнкция) 4.Логическое следование (импликация) 5.Логическое сложение (дизъюнкция) 6.Логическое равенство (эквивалентность)
Решение задач 1.Вычислить значение логического выражения, если А = ложь, В = истина, С = ложь. а) АВ б) ВС в) СА 2. Вычислить значение логического выражения, если А = истина, В = ложь, С = истина. а) А~В б) В~С в) С~А