ЛАБОРАТОРИЯ РАДИО- АКУСТИЧЕСКАЯ В.М.Бовшеверов Радиоакустическая лаборатория была организована по инициативе академика А.М. Обухова в 1956 году, сразу.

Презентация:



Advertisements
Похожие презентации
Методические подходы к созданию системы локального расчетного мониторинга атмосферных биоаэрозолей Шварц Константин Григорьевич, д.ф.м.н, профессор. Кафедра.
Advertisements

ЛАБОРАТОРИЯ ТУРБУЛЕНТНОСТИ И РАСПРОСТРАНЕНИЯ ВОЛН ТУРБУЛЕНТНОСТЬ И ВНУТРЕННИЕ ВОЛНЫ В СТРАТОСФЕРЕ ПО НАБЛЮДЕНИЯМ МЕРЦАНИЙ ЗВЕЗД ИЗ КОСМОСА СПУТНИКОВАЯ.
Диссипативная неустойчивость аэрозольного потока в плазме планетных атмосфер В.С. Грач Институт прикладной физики РАН, г. Нижний Новгород.
Объединение моделей верхней и нижней атмосферы Белоушко К.Е. Мурманский государственный технический университет Мурманск2012.
АНАЛИЗ СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК ПУЛЬСАЦИЙ СКОРОСТИ В КОНВЕКТИВНОЙ ТУРБУЛЕНТНОСТИ ПО РЕЗУЛЬТАТАМ ДОПЛЕРОВСКОЙ АНЕМОМЕТРИИ П.А.Оборин, А.Ю. Васильев,
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА»
Портянская Инна Иркутский государственный университет, Иркутск п. Большие Коты, Байкал, Россия 25 – 29 июня 2007 года Моделирование температурного режима.
НИР по секции «солнечно-земные связи» Заседание Совета РАН по космосу 3 июля 2014 г. Докладчик чл.-к. РАН А.А. Петрукович (п.2.5 повестки дня)
20 декабря 2007 г. Исследование космических лучей на высотах гор В.П.ПавлюченкоВ.С.Пучков.
ЛАБОРАТОРИЯ ОПТИКИ И МИКРОФИЗИКИ АЭРОЗОЛЯ Основные направления исследований Лаборатория оптики и микрофизики аэрозоля развивает исследования атмосферного.
Карельский К. В. Петросян А. С.Славин А. Г. Численное моделирование течений вращающейся мелкой воды Карельский К. В. Петросян А. С. Славин А. Г. Институт.
Б.В. Сомов, А.В. Орешина Государственный астрономический институт им. П.К. Штернберга Московского Государственного Университета им. М.В. Ломоносова НАГРЕВ.
Электромагнитные излучения небесных тел. Электромагнитное излучение небесных тел основной источник информации о космических объектах. Исследуя электромагнитное.
Гидродинамика Солнца Лекция 9Гидродинамика Солнца Лекция 9.
Схема модели: 1 – кювета с твердыми границами, 2 – «горячий» теплообменник, 3 – «холодный» теплообменник, 4 – основное адвективное течение, 5 – вторичные.
ДИНАМИЧЕСКИЕ ЭФФЕКТЫ ВНЕЗАПНЫХ СТРАТОСФЕРНЫХ ПОТЕПЛЕНИЙ В АВРОРАЛЬНОЙ ИОНОСФЕРЕ Лукьянова Р.Ю. Геофизический Центр РАН, Москва Козловский А.Е. Геофизическая.
Лаборатория нелинейных процессов в газовых средах МФТИ (FlowModellium Lab) Моделирование турбулентных пристенных течений В.А. Алексин, Ф.А. Максимов 17.
Экспериментальное исследование распределения скорости вещества в зоне гравитационного турбулентного перемешивания газов, вызванной неустойчивостями Рихтмайера-Мешкова.
АТМОСФЕРНЫЕ ВАРИАЦИИ ИНТЕНСИВНОСТИ МЮОНОВ ДЛЯ РАЗЛИЧНЫХ ЗЕНИТНЫХ УГЛОВ РЕГИСТРАЦИИ.
Дипломная работа Афанасьева Андрея Анатольевича Научный руководитель: к.ф.-м.н., доцент Широков Евгений Вадимович Акустические методы регистрации нейтрино.
Транксрипт:

ЛАБОРАТОРИЯ РАДИО- АКУСТИЧЕСКАЯ В.М.Бовшеверов Радиоакустическая лаборатория была организована по инициативе академика А.М. Обухова в 1956 году, сразу же после создания Института физики атмосферы. Ее возглавил известный ученый, представитель Нижегородской радиофизической школы Виктор Маркович Бовшеверов ( ), который и руководил лабораторией до 1985 года. После него лабораторию долгое время возглавляла М.А.Каллистратова. В настоящее время лабораторией заведует С.Н.Куличков. ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ ТУРБУЛЕНТНОСТИ Акустические антенны доплеровского содара Разработан, испытан и введен в режим непрерывных круглосуточных измерений содар нового поколения ЛАТАН-3, в котором все основные функции формирования сигналов и их первичной обработки выполняются программным путем. Разработан метод дистанционного определения вертикальных профилей коэффициента турбулентной вязкости и других параметров турбулентности. Получены статистические данные о скорости и направлении ветра, о повторяемости низкоуровневых инверсий над Москвой и об их влиянии на приземные концентрации загрязняющих примесей. Эхо-сигнал содара ЛАТАН-3, профили скорости и направления ветра Генерация акустического импульса детонационным источником Спектры вариаций азимута, угла наклона луча, горизонтального ветра и вертикального ветра Прием акустического импульса на 3 микрофона на расстоянии 6.5 км от источником Форма акустического импульса на расстоянии 100 м от источника Детонационный источник акустических импульсов Инфразвуковой мониторинг взрывов Содары Когерентные структурыСпиральностьЭлектричество Разработана модель формирования тонких локально слоистых (анизотропных) неоднородностей скорости ветра и температуры в атмосфере в случайном поле внутренних гравитационных волн (ВГВ). Акустическими методами были выявлены характерные масштабы конвективных когерентных структур в атмосферном пограничном слое. Лаборатория участвует в совершенствовании инфразвуковых методов, используемых в международной сети контроля за выполнением Договора о всеобъемлющем запрещении ядерных испытаний. Получен и систематизирован уникальный архив экспериментальных данных регистрации инфразвуковых волн на больших (до 1000 км) расстояниях от взрывов различного типа (подземных, поверхностных, воздушных - тропосферных и термосферных) и разной энергии (от 5 кг до 4000 т. в тротиловом эквиваленте), произведённых сериями (до 7-ми взрывов подряд) в разных географических регионах, в разные сезоны года, в широком диапазоне временных интервалов между взрывами (от 1 минуты до нескольких суток). Зарегистрированы приземные (волны Лэмба –L), стратосферные (PSM), мезосферные ( I M ) и термосферные (I T ) акустические приходы от взрывов. Акустическим методом обнаружены долгоживущие анизотропные структуры в мезосфере. Отражение импульсных инфразвуковых сигналов (7 последовательных взрывов) от обнаруженного в эксперименте долгоживущего слоя в мезосфере на высотах z 70 км. Расстояние до источника 300 км. Акустическое поле от взрыва на высоте 8 км, рассчитанное методом параболического уравнения. Когерентные структуры температурного поля в слое до 35 м по измерениям на мачте Спектры компонент спиральности Установка циркулиметра на верхней площадке 45- метровой мачты Спектральные коэффициенты корреляции: 1 -UT, 2 - ET, 3 - UE, устойчивость; 4 - UT, 5 - ET, 6 - UE, неустойчивость. С коллегами из Института Физики Земли (полигон Борок) Конвективные структуры приземного слоя в первом приближении могут быть представлены как проникновение куполоообразных односвязных объемов теплого воздуха в более холодные вышележащие слои. Изменчивость поля температуры в слое до 35 м описана в терминах эмпирических ортогональных функций (ЭОФ). Первые три ЭОФ и соответствующие им собственные значения описывают профиль с точностью порядка 10%. Обнаружена циркуляция, обусловленная прохождением кучевого облака, с оседанием под центром. Разработана аппаратура для исследования спиральности акустическим методом, измерены спектры турбулентных вариаций спиральности. Важность исследования спиральности в природных системах обусловлена тем, что, согласно расчетам, ненулевая спиральность влияет на передачу энергии по спектру, что указывает на ее роль в формировании крупномасштабных структур. Выполнен эксперимент по синхронной регистрации вариаций вертикальной составляющей напряженности электрического поля E, вариаций температуры T и компонент скорости ветра U, V, W. Анализ полученных данных дает основание считать, что вариации напряженности обусловлены стратификацией и неоднородностями пространственного распределения зарядов и их переносом турбулентным потоком воздуха. Сопоставление экспериментальных и расчетных акустических сигналов (расстояние от взрыва 180 км. )