ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.

Презентация:



Advertisements
Похожие презентации
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
Advertisements

ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
Презентация к уроку (геометрия, 10 класс) по теме: Презентация угол между прямой и плоскостью, 10 кл.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
Перпендикуляр и наклонная. Теорема: Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
Презентация к уроку геометрии (10 класс) по теме: Перпендикулярность прямых и плоскостей
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
Окружность Окружностью называется фигура, состоящая из всех точек плоскости … удаленных от данной точки на данное расстояние. Данная точка называется …центром.
Урок 13 Перпендикулярность прямой и плоскости. Перпендикуляр и наклонная к плоскости.
Угол между прямой и плоскостью. Перпендикулярность плоскостей.
МОУ Засосенская СОШ им.Н.Л. Яценко Презентация по геометрии на тему: «Перпендикуляр и наклонные. Угол между прямой и плоскостью» Выполнила: ученица 10а.
ОРТОГОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
Презентация на тему «Основы стереометрии» Автор: Кожушко Анна.
Перпендикулярность прямых Перпендикулярность прямой и плоскости. Перпендикулярность плоскостей Проверь себя Преподаватель математики ОГБОУ ПЛ 1 г.Иваново.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Полувписанная сфера Сфера называется полувписанной в многогранник, если она касается всех его ребер. Центром полувписанной сферы является точка, равноудаленная.
Транксрипт:

ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения прямой a с плоскостью π обозначим O. Отрезок AO называется перпендикуляром, опущенным из точки A на плоскость π. Наклонной к плоскости называется прямая, пересекающая эту плоскость и не перпендикулярная ей. Наклонной называют также отрезок, соединяющий точку, не принадлежащую плоскости, с точкой плоскости, и не являющийся перпендикуляром.

Теорема о перпендикуляре и наклонной Теорема. Перпендикуляр, опущенный из точки на плоскость, короче всякой наклонной, проведенной из той же точки к той же плоскости. Доказательство. Пусть AB – наклонная к плоскости α, AO – перпендикуляр, опущенный на эту плоскость. Соединим отрезком точки O и B. Треугольник AOB прямоугольный, AB – гипотенуза, AO – катет. Следовательно, AO < AB.

Теорема о трех перпендикулярах Теорема. Если прямая, лежащая в плоскости, перпендикулярна ортогональной проекции наклонной к этой плоскости, то она перпендикулярна и самой наклонной. Доказательство. Пусть прямая а плоскости α перпендикулярна проекции OB наклонной АВ. Тогда она будет перпендикулярна двум пересекающимся прямым OB и AO. По признаку перпендикулярности прямой и плоскости, прямая а перпендикулярна плоскости АOВ и, следовательно, она будет перпендикулярна наклонной АВ.

Верно ли утверждение: «Если из двух различных точек, не принадлежащих плоскости, проведены к ней две равные наклонные, то их проекции тоже равны»? Ответ: Нет. Упражнение 1

К плоскости прямоугольника ABCD в точке пересечения диагоналей восстановлен перпендикуляр. Верно ли утверждение о том, что произвольная точка M этого перпендикуляра равноудалена от вершин прямоугольника? Ответ: Да. Упражнение 2

Точка M равноудалена от всех точек окружности. Верно ли утверждение о том, что она принадлежит перпендикуляру к плоскости окружности, проведённому через её центр? Ответ: Да. Упражнение 3

Основание ABCD пирамиды SABCD – прямоугольник, AB < BC. Ребро SD перпендикулярно плоскости основания. Среди отрезков SA, SB, SC и SD укажите наименьший и наибольший. Ответ: SD – наименьший; SB – наибольший. Упражнение 4

Из точки A к данной плоскости проведены перпендикуляр и наклонная, пересекающие плоскость соответственно в точках B и C. Найдите отрезок AC, если AB = 6 см, BAC = 60°. Ответ: 12 см. Задача 1

Отрезки двух наклонных, проведенных из одной точки к плоскости, равны 15 см и 20 см. Проекция одного из этих отрезков равна 16 см. Найдите проекцию другого отрезка. Ответ: 9 см. Задача 2

Из точки A к данной плоскости проведены перпендикуляр и наклонная, пересекающие плоскость соответственно в точках B и C. Найдите проекцию отрезка AC, если AC = 37 см, AB = 35 см. Ответ: 12 см. Задача 3